70. Climbing Stairs

一、题目

  1、审题

  

  2、分析

    一次可以跳一步或者2步,求跳到 n 时共有几种跳法。

二、解答

  1、思路:

    方法一、

      采用递归,到 n 级台阶记为 f(n), 则到达 n 级台阶的跳法组成为: f(n) = f(n-1) + f(n-2) ;

      注意: 递归算法有许多重复的计算,导致时间超出了。。。。。。。

public int climbStairs(int n) {
        
        if(n == 1)
            return 1;
        if(n == 2)
            return 2;
        
        return climbStairs(n - 1) + climbStairs(n - 2);
    }

  

    方法二、

      将递归改为 递推式。

      从前往后推,利用前面用到的计算结果。

      初始化时 dp[0] = dp[1] = 1, 利用 dp[n] = dp[n-1] + dp[n-2] 即可。

// 递推
    public int climbStairs2(int n) {
        
        if(n < 2)
            return 1;
        
        int[] dp = new int[3];
        dp[0] = 1;
        dp[1] = 1;
        
        for(int i = 2; i <= n; i++) {
            dp[2] = dp[0] + dp[1]; 
            dp[0] = dp[1];
            dp[1] = dp[2];
        }
        
        return dp[2];
    }

 

posted @ 2018-09-21 14:49  skillking2  阅读(159)  评论(0编辑  收藏  举报