Follow me on GitHub

图像数据增强 (Data Augmentation in Computer Vision)

1.1 简介

深层神经网络一般都需要大量的训练数据才能获得比较理想的结果。在数据量有限的情况下,可以通过数据增强(Data Augmentation)来增加训练样本的多样性, 提高模型鲁棒性,避免过拟合。

在计算机视觉中,典型的数据增强方法有翻转(Flip),旋转(Rotat ),缩放(Scale),随机裁剪或补零(Random Crop or Pad),色彩抖动(Color jittering),加噪声(Noise)

笔者在跟进视频及图像中的人体姿态检测和关键点追踪(Human Pose Estimatiion and Tracking in videos)的项目。因此本文的数据增强仅使用——翻转(Flip),旋转(Rotate ),缩放以及缩放(Scale)

 

2.1 裁剪(Crop)

image.shape--([3, width, height])一个视频序列中的一帧图片,裁剪前大小不统一
bbox.shape--([4,])人体检测框,用于裁剪
x.shape--([1,13]) 人体13个关键点的所有x坐标值
y.shape--([1,13])人体13个关键点的所有y坐标值 
 1     def crop(image, bbox, x, y, length):
 2         x, y, bbox = x.astype(np.int), y.astype(np.int), bbox.astype(np.int)
 3 
 4         x_min, y_min, x_max, y_max = bbox
 5         w, h = x_max - x_min, y_max - y_min
 6 
 7         # Crop image to bbox
 8         image = image[y_min:y_min + h, x_min:x_min + w, :]
 9 
10         # Crop joints and bbox
11         x -= x_min
12         y -= y_min
13         bbox = np.array([0, 0, x_max - x_min, y_max - y_min])
14 
15         # Scale to desired size
16         side_length = max(w, h)
17         f_xy = float(length) / float(side_length)
18         image, bbox, x, y = Transformer.scale(image, bbox, x, y, f_xy)
19 
20         # Pad
21         new_w, new_h = image.shape[1], image.shape[0]
22         cropped = np.zeros((length, length, image.shape[2]))
23 
24         dx = length - new_w
25         dy = length - new_h
26         x_min, y_min = int(dx / 2.), int(dy / 2.)
27         x_max, y_max = x_min + new_w, y_min + new_h
28 
29         cropped[y_min:y_max, x_min:x_max, :] = image
30         x += x_min
31         y += y_min
32 
33         x = np.clip(x, x_min, x_max)
34         y = np.clip(y, y_min, y_max)
35 
36         bbox += np.array([x_min, y_min, x_min, y_min])
37         return cropped, bbox, x.astype(np.int), y.astype(np.int) 

 

2.2 缩放(Scale)

image.shape--([3, 256, 256])一个视频序列中的一帧图片,裁剪后输入网络为256*256
bbox.shape--([4,])人体检测框,用于裁剪
x.shape--([1,13]) 人体13个关键点的所有x坐标值
y.shape--([1,13])人体13个关键点的所有y坐标值
f_xy--缩放倍数
 1     def scale(image, bbox, x, y, f_xy):
 2         (h, w, _) = image.shape
 3         h, w = int(h * f_xy), int(w * f_xy)
 4         image = resize(image, (h, w), preserve_range=True, anti_aliasing=True, mode='constant').astype(np.uint8)
 5 
 6         x = x * f_xy
 7         y = y * f_xy
 8         bbox = bbox * f_xy
 9 
10         x = np.clip(x, 0, w)
11         y = np.clip(y, 0, h)
12 
13         return image, bbox, x, y

 

2.3 翻转(fillip)

这里是将图片围绕对称轴进行左右翻转(因为人体是左右对称的,在关键点检测中有助于防止模型过拟合)

1     def flip(image, bbox, x, y):
2         image = np.fliplr(image).copy()
3         w = image.shape[1]
4         x_min, y_min, x_max, y_max = bbox
5         bbox = np.array([w - x_max, y_min, w - x_min, y_max])
6         x = w - x
7         x, y = Transformer.swap_joints(x, y)
8         return image, bbox, x, y

翻转前:

翻转后:

 

2.4 旋转(rotate)

angle--旋转角度

 1     def rotate(image, bbox, x, y, angle):
 2         # image - -(256, 256, 3)
 3         # bbox - -(4,)
 4         # x - -[126 129 124 117 107  99 128 107 108 105 137 155 122  99]
 5         # y - -[209 176 136 123 178 225  65  47  46  24  44  64  49  54]
 6         # angle - --8.165648811999333
 7         # center of image [128,128]
 8         o_x, o_y = (np.array(image.shape[:2][::-1]) - 1) / 2.
 9         width,height = image.shape[0],image.shape[1]
10         x1 = x
11         y1 = height - y
12         o_x = o_x
13         o_y = height - o_y
14         image = rotate(image, angle, preserve_range=True).astype(np.uint8)
15         r_x, r_y = o_x, o_y
16         angle_rad = (np.pi * angle) /180.0
17         x = r_x + np.cos(angle_rad) * (x1 - o_x) - np.sin(angle_rad) * (y1 - o_y)
18         y = r_y + np.sin(angle_rad) * (x1 - o_x) + np.cos(angle_rad) * (y1 - o_y)
19         x = x
20         y = height - y
21         bbox[0] = r_x + np.cos(angle_rad) * (bbox[0] - o_x) + np.sin(angle_rad) * (bbox[1] - o_y)
22         bbox[1] = r_y + -np.sin(angle_rad) * (bbox[0] - o_x) + np.cos(angle_rad) * (bbox[1] - o_y)
23         bbox[2] = r_x + np.cos(angle_rad) * (bbox[2] - o_x) + np.sin(angle_rad) * (bbox[3] - o_y)
24         bbox[3] = r_y + -np.sin(angle_rad) * (bbox[2] - o_x) + np.cos(angle_rad) * (bbox[3] - o_y)
25         return image, bbox, x.astype(np.int), y.astype(np.int)

旋转前:

旋转后:

 

 

3 结果(output)

数据增强前的原图:

数据增强后:

 

posted @ 2019-04-10 22:24  SiyuanChen  阅读(11300)  评论(5编辑  收藏  举报