BP神经网络python实现

一、 激活函数

def sigmoid(Z):
   
    A = 1/(1+np.exp(-Z))
    cache = Z
    
    return A, cache
 
def relu(Z):
    A = np.maximum(0,Z)    
    cache = Z 
    return A, cache
 
 

二、 激活函数backward

"""
Implement the backward propagation for a single RELU unit.
"""
def relu_backward(dA, cache):
 
    Z = cache
    dZ = np.array(dA, copy=True) # just converting dz to a correct object.
    
    # When z <= 0, you should set dz to 0 as well. 
    dZ[Z <= 0] = 0return dZ
 
 
"""
Implement the backward propagation for a single SIGMOID unit.
"""
def sigmoid_backward(dA, cache):
 
    Z = cache
    s = 1/(1+np.exp(-Z))
    dZ = dA * s * (1-s)
    return dZ

三、 网络层前馈和激活函数前馈

"""
Implement the linear part of a layer's forward propagation.
"""
def linear_forward(A, W, b):
 
    Z = np.dot(W, A) + b
    
    assert(Z.shape == (W.shape[0], A.shape[1]))
    cache = (A, W, b)
    
    return Z, cache
 
 
"""
Implement the forward propagation for the LINEAR->ACTIVATION layer
"""
def linear_activation_forward(A_prev, W, b, activation):
    if activation == "sigmoid":
        # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = sigmoid(Z)
    elif activation == "relu":
        # Inputs: "A_prev, W, b". Outputs: "A, activation_cache".
        Z, linear_cache = linear_forward(A_prev, W, b)
        A, activation_cache = relu(Z)
    
    assert (A.shape == (W.shape[0], A_prev.shape[1]))
    cache = (linear_cache, activation_cache)
 
    return A, cache

四、 构建L层前馈

"""
Implement forward propagation for the [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID computation
"""
def L_model_forward(X, parameters):
    caches = []
    A = X
    L = len(parameters) // 2                  # number of layers in the neural network
    
    # Implement [LINEAR -> RELU]*(L-1). Add "cache" to the "caches" list.
    for l in range(1, L):
        A_prev = A 
        A, cache = linear_activation_forward(A_prev, parameters['W' + str(l)],parameters['b' + str(l)], activation = "relu")
        caches.append(cache)
    
    # Implement LINEAR -> SIGMOID. Add "cache" to the "caches" list.
    AL, cache = linear_activation_forward(A, parameters['W' + str(L)], \
            parameters['b' + str(L)], activation = "sigmoid")
    caches.append(cache)
    
    assert(AL.shape == (1,X.shape[1]))
            
    return AL, caches

五、 计算cost

def compute_cost(AL, Y):
    """
    Implement the cost function defined by equation (7).

    Arguments:
    AL -- probability vector corresponding to your label predictions, shape (1, number of examples)
    Y -- true "label" vector (for example: containing 0 if non-cat, 1 if cat), shape (1, number of examples)

    Returns:
    cost -- cross-entropy cost
    """
    
    m = Y.shape[1]
    # Compute loss from aL and y.
    ### START CODE HERE ### (≈ 1 lines of code)
    cost = np.average(np.power(AL-Y,2))
    ### END CODE HERE ###
    return cost

六、 网络层反馈及激活函数反馈

"""
Implement the linear portion of backward propagation for a single layer (layer l)
"""
def linear_backward(dZ, cache):
    
    A_prev, W, b = cache  # b没用上
    m = A_prev.shape[1]
    
    dW = (1 / m) * np.dot(dZ, A_prev.T)
    db = (1 / m) * np.sum(dZ, axis=1, keepdims=True)
    dA_prev = np.dot(W.T, dZ)
    
    assert (dA_prev.shape == A_prev.shape)
    assert (dW.shape == W.shape)
    assert (db.shape == b.shape)
    
    return dA_prev, dW, db
 
"""
Implement the backward propagation for the LINEAR->ACTIVATION layer.
"""
def linear_activation_backward(dA, cache, activation):
    
    linear_cache, activation_cache = cache
    
    if activation == "relu":
        dZ = relu_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
        
    elif activation == "sigmoid":
        dZ = sigmoid_backward(dA, activation_cache)
        dA_prev, dW, db = linear_backward(dZ, linear_cache)
    
    return dA_prev, dW, db

七、 L层网络反馈

"""
Implement the backward propagation for the [LINEAR->RELU] * (L-1) -> LINEAR -> SIGMOID group
"""
def L_model_backward(AL, Y, caches):
    
    grads = {}
    L = len(caches) # the number of layers
#    m = AL.shape[1]
    Y = Y.reshape(AL.shape) # after this line, Y is the same shape as AL
 
    # Initializing the backpropagation
    dAL = AL - Y # derivative of cost with respect to AL
    
    # Lth layer (SIGMOID -> LINEAR) gradients. Inputs: "AL, Y, caches". Outputs: "grads["dAL"], grads["dWL"], grads["dbL"]
    current_cache = caches[L-1] #((A W b),  (Z))
    grads["dA" + str(L)], grads["dW" + str(L)], grads["db" + str(L)] = \
    linear_activation_backward(dAL, current_cache, activation = "sigmoid")
    
    for l in reversed(range(L - 1)):
        # lth layer: (RELU -> LINEAR) gradients.
        # Inputs: "grads["dA" + str(l + 2)], caches". Outputs: "grads["dA" + str(l + 1)] , grads["dW" + str(l + 1)] , grads["db" + str(l + 1)] 
 
        current_cache = caches[l]
        dA_prev_temp, dW_temp, db_temp = linear_activation_backward(grads["dA" + str(l+2)], current_cache, activation = "relu")
        grads["dA" + str(l + 1)] = dA_prev_temp
        grads["dW" + str(l + 1)] = dW_temp
        grads["db" + str(l + 1)] = db_temp
 
    return grads

八、 梯度下降

"""
Update parameters using gradient descent
"""
def update_parameters(parameters, grads, learning_rate):
 
    L = len(parameters) // 2 # number of layers in the neural network
 
    # Update rule for each parameter. Use a for loop.
    for l in range(L):
        parameters["W" + str(l+1)] =  parameters["W" + str(l+1)] - learning_rate * grads["dW" + str(l + 1)]
        parameters["b" + str(l+1)] = parameters["b" + str(l+1)] - learning_rate * grads["db" + str(l + 1)]
        
    return parameters

九、 整合成一个模型

"""
Implements a L-layer neural network: [LINEAR->RELU]*(L-1)->LINEAR->SIGMOID.
"""
def L_layer_model(X, Y, layers_dims, learning_rate = 0.0075, num_iterations = 3000, print_cost=False):#lr was 0.009
 
    costs = []                         # keep track of cost
    
    # Parameters initialization.
    parameters = initialize_parameters_deep(layers_dims)
    
    # Loop (gradient descent)
    for i in range(0, num_iterations):
 
        # Forward propagation: [LINEAR -> RELU]*(L-1) -> LINEAR -> SIGMOID.
        AL, caches = L_model_forward(X, parameters)
        
        # Compute cost.
        cost = compute_cost(AL, Y)
    
        # Backward propagation.
        grads = L_model_backward(AL, Y, caches)
 
        # Update parameters.
        parameters = update_parameters(parameters, grads, learning_rate)
                
        # Print the cost every 100 training example
        if print_cost and i % 100 == 0:
            print ("Cost after iteration %i: %f" %(i, cost))
        if print_cost and i % 100 == 0:
            costs.append(cost)
    
    return parameters

 

posted @ 2020-03-04 14:16  金思远  阅读(1018)  评论(0编辑  收藏  举报