刷题647. Palindromic Substrings
一、题目说明
题目647. Palindromic Substrings,给定一个字符串,计算所有子串中回文的数量。难度是Medium!
二、我的解答
这个题目,能想到的是brute force方法:
class Solution{
public:
int countSubstrings(string s){
int len = s.length();
if(len<1) return 0;
else if(len<2) return 1;
int sum = 0;
for(int i=0;i<len;i++){
sum += dfs(s,i);
}
return sum;
}
int dfs(string&s,int start){
int len = s.size();
if(start == len-1){
return 1;
}
int sum = 0;
for(int i=start;i<len;i++){
if(checkPalindromic(s.substr(start,i-start+1))){
sum++;
}
}
return sum;
}
bool checkPalindromic(string s){
int len = s.size();
int mid = len /2;
for(int i=0;i<=mid;i++){
if(s[i]!=s[len-i-1]){
return false;
}
}
return true;
}
};
性能如下:
Runtime: 492 ms, faster than 7.13% of C++ online submissions for Palindromic Substrings.
Memory Usage: 458.4 MB, less than 8.00% of C++ online submissions for Palindromic Substrings.
三、优化措施
可以用“中心拓展法”,“动态规划法”。
class Solution{
public:
//中心拓展法
int countSubstrings(string s){
res = 0;
if(s.size()==0) return 0;
for(int i=0;i<s.size();i++){
expandAroundCenter(s,i,i);//以i个元素为中心扩展
expandAroundCenter(s,i,i+1);// 以i、i+1为中心扩展
}
return res;
}
void expandAroundCenter(string s,int begin,int end){
while(begin>=0 && end<s.size() && s[begin]==s[end]){
begin--;
end++;
res++;
}
}
private:
int res;
};
性能:
Runtime: 8 ms, faster than 68.00% of C++ online submissions for Palindromic Substrings.
Memory Usage: 15.6 MB, less than 12.00% of C++ online submissions for Palindromic Substrings.
用dp的代码及性能如下:
class Solution{
public:
//dp[i][j]表示从第i个元素到第j个元素是否是回文
//if(dp(i+1)(j-1)==true&&s[i]=s[j]) dp(i)(j)=true
//从相邻的元素出发
int countSubstrings(string s){
int res = 0;
int len = s.size();
vector<vector<bool>> dp(len,vector<bool>(len));
for(int j=0;j<len;j++){
for(int i=j;i>=0;i--){
if(s[i]==s[j] && ((j-i<2)|| dp[i+1][j-1])){
dp[i][j] = true;
res ++;
}
}
}
return res;
}
};
Runtime: 20 ms, faster than 42.04% of C++ online submissions for Palindromic Substrings.
Memory Usage: 9.9 MB, less than 48.00% of C++ online submissions for Palindromic Substrings.
所有文章,坚持原创。如有转载,敬请标注出处。