tensorflow 常用基本函数整理

tf.placeholder(dtype, shape=None, name=None)

参数:
dtype:数据类型。常用的是tf.float32, tf.float64等数值类型
shape:数据形状。默认是None,就是一维值,也可以是多维,比如[2,3], [None, 3]表示列是3,行不定
name:名称。

# 定义
x = tf.placeholder(tf.float32, shape=(1024, 1024)) 
# 执行,利用feed_dict的字典结构给placeholdr变量“喂数据”
y = tf.add(x, x)  
with tf.Session() as sess:  
  # print(sess.run(y))  # ERROR: 此处x还没有赋值.  
  a = np.random.rand(1024, 1024)  
  print(sess.run(y, feed_dict={x: a}))  

参考: https://blog.csdn.net/zj360202/article/details/70243127

tf.constant()

定义

tf.constant(
    value,
    dtype=None,
    shape=None,
    name='Const',
    verify_shape=False
)

创建一个常数张量

import tensorflow as tf
import numpy as np

a = tf.constant([1, 2, 3, 4, 5, 6, 7])
b = tf.constant(-1.0, shape=[2, 3])
c = tf.constant([1, 2, 3, 4, 5, 6], shape=[2, 3])
d = tf.constant([7, 8, 9, 10, 11, 12], shape=[3, 2])
e = tf.constant(np.arange(1, 13, dtype=np.int32), shape=[2, 2, 3])

with tf.Session() as sess:
    print("a =", sess.run(a))
    print("b =", sess.run(b))
    print("c =", sess.run(c))
    print("d =", sess.run(d))
    print("e =", sess.run(e))  
a = [1 2 3 4 5 6 7]
b = [[-1. -1. -1.]
 [-1. -1. -1.]]
c = [[1 2 3]
 [4 5 6]]
d = [[ 7  8]
 [ 9 10]
 [11 12]]
e = [[[ 1  2  3]
  [ 4  5  6]]

 [[ 7  8  9]
  [10 11 12]]]

tf.Varialbe

Tensorflow中用于定义变量,这个变量能够保持到程序结束。
在深度学习中,常创建变量来保存权重等参数。
变量在使用前必须初始化。
tf.Variable是一个类,它实例化的对象有下面这些属性:

x = tf.Variable()      # 实例化

x.initializer          # 初始化单个变量
x.value()              # 读取op
x.assign()             # 写入op
x.assign_add()         # 更多op
x.eval()               # 输出变量内容

变量的定义和初始化:

import tensorflow as tf

# 形状为2*3的正态分布,均值为0,标准差为2; seed设定后每次随机生成的值相同
weights1 = tf.Variable(tf.random_normal([2, 3], stddev = 2, seed = 1))

# 形状为2*3的正态分布,均值为0,标准差为2; seed设定后每次随机生成的值不相同
weights2 = tf.Variable(tf.random_normal([2, 3], mean = 1, stddev = 2))

# 使用常数来设置偏置项(bias)初始值; 生成长度为3,值为0
biases = tf.Variable(tf.zeros([3]))

# 通过其他变量设置初始值
w2 = tf.Variable(weights1.initialized_value())

# 通过tf.global_variables_initializer函数全部初始化
init = tf.global_variables_initializer()
with tf.Session() as sess:
    sess.run(init)
    print("weights1=", sess.run(weights1))
    print("weights2=", sess.run(weights2))
    print("biases=", sess.run(biases))
    print("w2=", sess.run(w2))
weights1= [[-1.6226364   2.9691975   0.13065875]
 [-4.8854084   0.1984968   1.1824486 ]]
weights2= [[1.5604866 2.4487138 1.8684036]
 [2.9444995 1.3254981 2.5650797]]
biases= [0. 0. 0.]
w2= [[-1.6226364   2.9691975   0.13065875]
 [-4.8854084   0.1984968   1.1824486 ]]

变量单独初始化:

W = tf.Variable(tf.zeros([784, 10])) 
with tf.Session() as sess:
    sess.run(W.initializer) 

参考: https://blog.csdn.net/yjk13703623757/article/details/77075711

posted @ 2018-07-16 22:27  Siucaan  阅读(199)  评论(0编辑  收藏  举报