[SHOI2014]超能粒子炮

转化题意,给定n,m,a,b,序列元素为\(f_i=(a* i+b)\mod m+1\),求逆序对个数

首先不难发现序列分成了若干段等差数列,公差为 a

考虑到题目里两个限制

  1. n<=m

  2. m是质数,a在模m意义下有逆,\(\min (a,a^{-1})<=1000\)

不难计算等差数列的个数为\(O(a)\)

于是若a<=1000,已经有了一个\(O(a^2)\)的做法,枚举两段等差数列,\(O(1)\)计算逆序对个数

计算时可以先将两段对齐然后计算

\(a^{-1}<=1000\)\(a* i+b+1=f_i\),移项得\(i=(f_i-1)* a^{-1}-b* a^{-1}\)

\(f_i-1\)为下标,此时是\(O(a^{-1})\)段公差为\(a^{-1}\)的的等差数列,可以\(O((a^{-1})^2)\)解决

需要注意的是第二种情况并非所有元素都是合法的,注意去掉\(i>n\)\(i=0\)的情况

#include<bits/stdc++.h>
using namespace std;
#define int long long
const int N=1e6+11;
struct dc_{
	int a,len;
}xl[N];
int num;
int n,mod,a,b;
inline int read()
{
	int s=0;
	char ch=getchar();
	while(ch>'9'||ch<'0') ch=getchar();
	while(ch>='0'&&ch<='9')
	{
		s=(s<<1)+(s<<3)+(ch^48);
		ch=getchar();
	}
	return s;
}
inline int min_(int x,int y){return x>y?y:x;}
inline long long js(int x,int k){return 1ll*(x+(x-k+1))*k/2;}
int fm(int x,int y)
{
	int ans=1;
	while(y)
	{
		if(y&1) ans=ans*x%mod;
		y>>=1;
		x=x*x%mod;
	}
	return ans;
}
signed main()
{
	n=read();
	mod=read();
	a=read();
	b=read();
	int ans=0;
	if(a>1000)
	{
		a=fm(a,mod-2),b=(mod-b*a%mod)%mod;
		num=0;
		int ed=0;
		int lastlen=0;
		for(;;)
		{
			if(lastlen>=n) break;
			if(b>n)
			{
				ed=(mod-b)/a+1;
				(b+=(ed*a))%=mod;
				continue;
			}
			++num;
			xl[num].a=b;
			xl[num].len=(n-b)/a+1;
			if(lastlen+xl[num].len>=n) {xl[num].len=n-lastlen;break;}
			lastlen+=xl[num].len;
			(b+=xl[num].len*a)%=mod;
		}
	}
	else
	{
		b+=a;
		num=0;
		int lastlen=0;
		for(;;)
		{
			++num;
			xl[num].a=b%mod;
			xl[num].len=(mod-xl[num].a-1)/a+1;
			if(lastlen+xl[num].len>=n) {xl[num].len=n-lastlen;break;}
			b=(b+a*((mod-xl[num].a-1)/a+1))%mod;
			lastlen+=xl[num].len;
		}
	}
	for(int a1,i=1;i<=num;++i)
	{
		a1=(xl[i].len-1)*a+xl[i].a;
		for(int a2,qs,len,j=i+1;j<=num;++j)
		{
			a2=(xl[j].len-1)*a+xl[j].a;
			if(a1<=xl[j].a) continue;
			else if(a2<xl[i].a){ans+=1ll*xl[i].len*xl[j].len;continue;}
			else if(a2==xl[i].a){ans+=1ll*xl[i].len*xl[j].len-1;continue;}
			if(xl[i].a>xl[j].a)
			{
				qs=ceil((double)(xl[i].a-xl[j].a)/a);
				len=min_(xl[i].len,xl[j].len-qs+1);
				ans+=1ll*(qs-1)*xl[i].len+js(xl[i].len,len);
			}
			else
			{
				qs=(xl[j].a-xl[i].a)/a+1;
				len=min_(xl[i].len-qs,xl[j].len);
				ans+=js(xl[i].len-qs,len);
			}
		}
	}
	cout<<ans<<endl;
	return 0;
}
posted @ 2021-11-02 07:28  sitiy  阅读(110)  评论(0编辑  收藏  举报