数据结构-线性表
线性表定义:
1、0个或多个元素的集合
2、元素之间是有序的
3、元素个数有限
4、元素数据的类型必须相同
线性表是相同类型的n个数据元素的有限序列。
逐项访问,顺序存储
前驱 后继
线性表在程序中表现为一种特殊的数据类型。
线性表的操作则表现为一组函数。
顺序表(线性表的顺序存储结构):
SeqList.h
#ifndef _SEQLIST_H_ #define _SEQLIST_H_ typedef void SeqList; typedef void SeqListNode; /* 该方法用于创建并且返回一个空的线性表 */ SeqList* SeqList_Create(int capacity); /* 该方法用于销毁一个线性表list */ void SeqList_Destroy(SeqList* list); /* 该方法用于将一个线性表list中的所有元素清空 使得线性表回到创建时的初始状态 */ void SeqList_Clear(SeqList* list); /* 该方法用于返回一个线性表list中的所有元素个数 */ int SeqList_Length(SeqList* list); /* 返回线性表的最大容量 */ int SeqList_Capacity(SeqList* list); /* 该方法用于向一个线性表list的pos位置处插入新元素node 返回值为1表示插入成功,0表示插入失败 */ int SeqList_Insert(SeqList* list, SeqListNode* node, int pos); /* 该方法用于获取一个线性表list的pos位置处的元素 返回值为pos位置处的元素,NULL表示获取失败 */ SeqListNode* SeqList_Get(SeqList* list, int pos); /* 该方法用于删除一个线性表list的pos位置处的元素 返回值为被删除的元素,NULL表示删除失败 */ SeqListNode* SeqList_Delete(SeqList* list, int pos); #endif
SeqList.c
#include <stdio.h> #include <malloc.h> #include "SeqList.h" /** 头文件中定义为void 实现时定义真实的类型 数据封装 1、对外不用关心list,listNode的真实类型 2、不会产生误操作 */ typedef unsigned int TSeqListNode; //存储地址,这样可以适用于任何数据类型,更通用 typedef struct _tag_SeqList { int capacity; int length; TSeqListNode* node; } TSeqList; SeqList* SeqList_Create(int capacity) // O(1) { TSeqList* ret = NULL; if( capacity >= 0 ) { //结构体本身+数组 ret = (TSeqList*)malloc(sizeof(TSeqList) + sizeof(TSeqListNode) * capacity); } if( ret != NULL ) { ret->capacity = capacity; ret->length = 0; ret->node = (TSeqListNode*)(ret + 1); } return ret; } void SeqList_Destroy(SeqList* list) // O(1) { free(list); } void SeqList_Clear(SeqList* list) // O(1) { TSeqList* sList = (TSeqList*)list; if( sList != NULL ) { sList->length = 0; } } int SeqList_Length(SeqList* list) // O(1) { TSeqList* sList = (TSeqList*)list; int ret = -1; if( sList != NULL ) { ret = sList->length; } return ret; } int SeqList_Capacity(SeqList* list) // O(1) { TSeqList* sList = (TSeqList*)list; int ret = -1; if( sList != NULL ) { ret = sList->capacity; } return ret; } // pos 从0开始算起 int SeqList_Insert(SeqList* list, SeqListNode* node, int pos) // O(n) { TSeqList* sList = (TSeqList*)list; int ret = (sList != NULL); int i = 0; ret = ret && (sList->length + 1 <= sList->capacity); ret = ret && (0 <= pos); if( ret ) { if( pos >= sList->length ) { pos = sList->length; } for(i=sList->length; i>pos; i--) { sList->node[i] = sList->node[i-1]; } sList->node[i] = (TSeqListNode)node; sList->length++; } return ret; } SeqListNode* SeqList_Get(SeqList* list, int pos) // O(1) { TSeqList* sList = (TSeqList*)list; SeqListNode* ret = NULL; if( (sList != NULL) && (0 <= pos) && (pos < sList->length) ) { ret = (SeqListNode*)(sList->node[pos]); } return ret; } SeqListNode* SeqList_Delete(SeqList* list, int pos) // O(n) { TSeqList* sList = (TSeqList*)list; SeqListNode* ret = SeqList_Get(list, pos); int i = 0; if( ret != NULL ) { for(i=pos+1; i<sList->length; i++) { sList->node[i-1] = sList->node[i]; } sList->length--; } return ret; }
main.c
#include <stdio.h> #include <stdlib.h> #include "SeqList.h" /* run this program using the console pauser or add your own getch, system("pause") or input loop */ int main(int argc, char *argv[]) { SeqList* list = SeqList_Create(5); int i = 0; int j = 1; int k = 2; int x = 3; int y = 4; int z = 5; int index = 0; /** 找不到 TSeqList 因为在 SeqList.c 中定义 TSeqList *a = (TSeqList*)list; a->length = 0; */ // 由于list是void*类型,所以不被允许,更加安全 // list->length = 0; SeqList_Insert(list, &i, 0); SeqList_Insert(list, &j, 0); SeqList_Insert(list, &k, 0); SeqList_Insert(list, &x, 0); SeqList_Insert(list, &y, 0); SeqList_Insert(list, &z, 0); for(index=0; index<SeqList_Length(list); index++) { int* p = (int*)SeqList_Get(list, index); printf("%d\n", *p); } printf("\n"); while( SeqList_Length(list) > 0 ) { int* p = (int*)SeqList_Delete(list, 0); printf("%d\n", *p); } SeqList_Destroy(list); return 0; }
优点:
无需为线性表中的逻辑关系增加额外的空间
可以快速获取表中合法位置的元素
缺点:
插入和删除需要移动大量的元素。
当线性表长度变化较大时难以确定存储空间的容量(浪费空间)。
单链表(线性表的链式存储)
链式存储定义:
为了表示每个数据元素与其后继元素之间的逻辑关系,每个元素除了存储本身的信息外,
还需要存储其直接后续信息。
节点:数据域+指针域
n个节点链接成一个链式线性表的结构叫做链表。
当每个节点只包含一个指针域时,叫做单链表。
表头节点:
链表中第一个节点(但不是数据元素), 包含指向第一个数据元素的指针以及链表的一些自身信息.
数据节点:
链表中代表数据元素的节点, 包含指向下一个数据元素的指针和数据元素的信息。
尾节点:
链表中最后一个数据节点, 其下一元素指针为空,表示无后继.
头插法:每次都从链表头部插入
尾插法:每次都从链表尾部插入
LinkList.c
#include <stdio.h> #include <malloc.h> #include "LinkList.h" typedef struct _tag_LinkList { LinkListNode header; int length; } TLinkList; LinkList* LinkList_Create() // O(1) { TLinkList* ret = (TLinkList*)malloc(sizeof(TLinkList)); if( ret != NULL ) { ret->length = 0; ret->header.next = NULL; } return ret; } void LinkList_Destroy(LinkList* list) // O(1) { free(list); } void LinkList_Clear(LinkList* list) // O(1) { TLinkList* sList = (TLinkList*)list; if( sList != NULL ) { sList->length = 0; sList->header.next = NULL; } } int LinkList_Length(LinkList* list) // O(1) { TLinkList* sList = (TLinkList*)list; int ret = -1; if( sList != NULL ) { ret = sList->length; } return ret; } int LinkList_Insert(LinkList* list, LinkListNode* node, int pos) // O(n) { TLinkList* sList = (TLinkList*)list; int ret = (sList != NULL) && (pos >= 0) && (node != NULL); int i = 0; if( ret ) { LinkListNode* current = (LinkListNode*)sList; for(i=0; (i<pos) && (current->next != NULL); i++) { current = current->next; } node->next = current->next; current->next = node; sList->length++; } return ret; } LinkListNode* LinkList_Get(LinkList* list, int pos) // O(n) { TLinkList* sList = (TLinkList*)list; //转换成不同的类型,则可以访问不同的数据 LinkListNode* ret = NULL; int i = 0; if( (sList != NULL) && (0 <= pos) && (pos < sList->length) ) { //转换成不同的类型,则可以访问不同的数据 LinkListNode* current = (LinkListNode*)sList; for(i=0; i<pos; i++) { current = current->next; } ret = current->next; } return ret; } LinkListNode* LinkList_Delete(LinkList* list, int pos) // O(n) { TLinkList* sList = (TLinkList*)list; LinkListNode* ret = NULL; int i = 0; if( (sList != NULL) && (0 <= pos) && (pos < sList->length) ) { LinkListNode* current = (LinkListNode*)sList; for(i=0; i<pos; i++) { current = current->next; } ret = current->next; current->next = ret->next; sList->length--; } return ret; }
LinkList.h
#ifndef _LINKLIST_H_ #define _LINKLIST_H_ typedef void LinkList; typedef struct _tag_LinkListNode LinkListNode; struct _tag_LinkListNode { LinkListNode* next; }; LinkList* LinkList_Create(); void LinkList_Destroy(LinkList* list); void LinkList_Clear(LinkList* list); int LinkList_Length(LinkList* list); int LinkList_Insert(LinkList* list, LinkListNode* node, int pos); LinkListNode* LinkList_Get(LinkList* list, int pos); LinkListNode* LinkList_Delete(LinkList* list, int pos); #endif
main.c
#include <stdio.h> #include <stdlib.h> #include "LinkList.h" /* run this program using the console pauser or add your own getch, system("pause") or input loop */ struct Value { LinkListNode header; int v; }; int main(int argc, char *argv[]) { int i = 0; LinkList* list = LinkList_Create(); struct Value v1; struct Value v2; struct Value v3; struct Value v4; struct Value v5; v1.v = 1; v2.v = 2; v3.v = 3; v4.v = 4; v5.v = 5; //尾插法建立链表 LinkList_Insert(list, (LinkListNode*)&v1, LinkList_Length(list)); LinkList_Insert(list, (LinkListNode*)&v2, LinkList_Length(list)); LinkList_Insert(list, (LinkListNode*)&v3, LinkList_Length(list)); LinkList_Insert(list, (LinkListNode*)&v4, LinkList_Length(list)); LinkList_Insert(list, (LinkListNode*)&v5, LinkList_Length(list)); for(i=0; i<LinkList_Length(list); i++) { struct Value* pv = (struct Value*)LinkList_Get(list, i); printf("%d\n", pv->v); } while( LinkList_Length(list) > 0 ) { struct Value* pv = (struct Value*)LinkList_Delete(list, 0); printf("%d\n", pv->v); } LinkList_Destroy(list); return 0; }
优点:
无需一次性定制链表的容量。
插入和删除无需移动数据元素。
缺点:
数据元素必须保存后继元素的位置信息。
获取指定的数据元素操作需要顺序访问之前的元素。
单链表必须包含一个额外的指针域,没有指针的程序无法实现。(有些语言没有指针)
静态链表(单链表的数组方式实现)
静态链表是顺序表的改进,解决了顺序表插入和删除要移动大量元素的问题,同时解决了单链表必须依靠指针的问题。
静态链表(在顺序表的基础上用数组实现的单链表):
顺序表中的元素由两个元素组成:data和next
data用于存储数据。
next用于存储下一个元素在数组中的下标。
静态链表主要用于不支持指针的程序数据语言。
静态链表的实现是一种内存管理的有简易方法。(类似 malloc, free功能)
StaticList.h
#ifndef _STATICLIST_H_ #define _STATICLIST_H_ typedef void StaticList; typedef void StaticListNode; StaticList* StaticList_Create(int capacity); void StaticList_Destroy(StaticList* list); void StaticList_Clear(StaticList* list); int StaticList_Length(StaticList* list); int StaticList_Capacity(StaticList* list); int StaticList_Insert(StaticList* list, StaticListNode* node, int pos); StaticListNode* StaticList_Get(StaticList* list, int pos); StaticListNode* StaticList_Delete(StaticList* list, int pos); #endif
StaticList.c
#include <stdio.h> #include <malloc.h> #include "StaticList.h" #define AVAILABLE -1 typedef struct _tag_StaticListNode { unsigned int data; int next; //数组下标 } TStaticListNode; typedef struct _tag_StaticList { int capacity; TStaticListNode header; // 下面数组的第一个元素 TStaticListNode node[]; } TStaticList; StaticList* StaticList_Create(int capacity) // O(n) { TStaticList* ret = NULL; int i = 0; if( capacity >= 0 ) { ret = (TStaticList*)malloc(sizeof(TStaticList) + sizeof(TStaticListNode) * (capacity + 1)); } if( ret != NULL ) { ret->capacity = capacity; ret->header.data = 0; // length, 复用头结点 ret->header.next = 0; for(i=1; i<=capacity; i++) { ret->node[i].next = AVAILABLE; } } return ret; } void StaticList_Destroy(StaticList* list) // O(1) { free(list); } void StaticList_Clear(StaticList* list) // O(n) { TStaticList* sList = (TStaticList*)list; int i = 0; if( sList != NULL ) { sList->header.data = 0; sList->header.next = 0; for(i=1; i<=sList->capacity; i++) { sList->node[i].next = AVAILABLE; } } } int StaticList_Length(StaticList* list) // O(1) { TStaticList* sList = (TStaticList*)list; int ret = -1; if( sList != NULL ) { ret = sList->header.data; } return ret; } int StaticList_Capacity(StaticList* list) // O(1) { TStaticList* sList = (TStaticList*)list; int ret = -1; if( sList != NULL ) { ret = sList->capacity; } return ret; } int StaticList_Insert(StaticList* list, StaticListNode* node, int pos) // O(n) { TStaticList* sList = (TStaticList*)list; int ret = (sList != NULL); int current = 0; int index = 0; // 可利用下标 int i = 0; ret = ret && (sList->header.data + 1 <= sList->capacity); ret = ret && (pos >=0) && (node != NULL); if( ret ) { // 寻找可以利用的位置 for(i=1; i<=sList->capacity; i++) { if( sList->node[i].next == AVAILABLE ) { index = i; break; } } sList->node[index].data = (unsigned int)node; sList->node[0] = sList->header; for(i=0; (i<pos) && (sList->node[current].next != 0); i++) { current = sList->node[current].next; } sList->node[index].next = sList->node[current].next; sList->node[current].next = index; sList->node[0].data++; sList->header = sList->node[0]; } return ret; } StaticListNode* StaticList_Get(StaticList* list, int pos) // O(n) { TStaticList* sList = (TStaticList*)list; StaticListNode* ret = NULL; int current = 0; int object = 0; int i = 0; if( (sList != NULL) && (0 <= pos) && (pos < sList->header.data) ) { sList->node[0] = sList->header; for(i=0; i<pos; i++) { current = sList->node[current].next; } object = sList->node[current].next; ret = (StaticListNode*)(sList->node[object].data); } return ret; } StaticListNode* StaticList_Delete(StaticList* list, int pos) // O(n) { TStaticList* sList = (TStaticList*)list; StaticListNode* ret = NULL; int current = 0; int object = 0; int i = 0; if( (sList != NULL) && (0 <= pos) && (pos < sList->header.data) ) { sList->node[0] = sList->header; for(i=0; i<pos; i++) { current = sList->node[current].next; } object = sList->node[current].next; sList->node[current].next = sList->node[object].next; sList->node[0].data--; sList->header = sList->node[0]; sList->node[object].next = AVAILABLE; ret = (StaticListNode*)(sList->node[object].data); } return ret; }
main.c
#include <stdio.h> #include <stdlib.h> #include "StaticList.h" /* run this program using the console pauser or add your own getch, system("pause") or input loop */ int main(int argc, char *argv[]) { StaticList* list = StaticList_Create(10); int index = 0; int i = 0; int j = 1; int k = 2; int x = 3; int y = 4; int z = 5; StaticList_Insert(list, &i, 0); StaticList_Insert(list, &j, 0); StaticList_Insert(list, &k, 0); for(index=0; index<StaticList_Length(list); index++) { int* p = (int*)StaticList_Get(list, index); printf("%d\n", *p); } printf("\n"); while( StaticList_Length(list) > 0 ) { int* p = (int*)StaticList_Delete(list, 0); printf("%d\n", *p); } printf("\n"); StaticList_Insert(list, &x, 0); StaticList_Insert(list, &y, 0); StaticList_Insert(list, &z, 0); printf("Capacity: %d Length: %d\n", StaticList_Capacity(list), StaticList_Length(list)); for(index=0; index<StaticList_Length(list); index++) { int* p = (int*)StaticList_Get(list, index); printf("%d\n", *p); } StaticList_Destroy(list); return 0; }
循环链表(单链表的扩展)
CircleList.h
#ifndef _CIRCLELIST_H_ #define _CIRCLELIST_H_ typedef void CircleList; typedef struct _tag_CircleListNode CircleListNode; struct _tag_CircleListNode { CircleListNode* next; }; CircleList* CircleList_Create(); void CircleList_Destroy(CircleList* list); void CircleList_Clear(CircleList* list); int CircleList_Length(CircleList* list); int CircleList_Insert(CircleList* list, CircleListNode* node, int pos); CircleListNode* CircleList_Get(CircleList* list, int pos); CircleListNode* CircleList_Delete(CircleList* list, int pos); CircleListNode* CircleList_DeleteNode(CircleList* list, CircleListNode* node); CircleListNode* CircleList_Reset(CircleList* list); CircleListNode* CircleList_Current(CircleList* list); CircleListNode* CircleList_Next(CircleList* list); #endif
CircleList.c
#include <stdio.h> #include <malloc.h> #include "CircleList.h" typedef struct _tag_CircleList { CircleListNode header; CircleListNode* slider; //游标 int length; } TCircleList; CircleList* CircleList_Create() // O(1) { TCircleList* ret = (TCircleList*)malloc(sizeof(TCircleList)); if( ret != NULL ) { ret->length = 0; ret->header.next = NULL; ret->slider = NULL; } return ret; } void CircleList_Destroy(CircleList* list) // O(1) { free(list); } void CircleList_Clear(CircleList* list) // O(1) { TCircleList* sList = (TCircleList*)list; if( sList != NULL ) { sList->length = 0; sList->header.next = NULL; sList->slider = NULL; } } int CircleList_Length(CircleList* list) // O(1) { TCircleList* sList = (TCircleList*)list; int ret = -1; if( sList != NULL ) { ret = sList->length; } return ret; } int CircleList_Insert(CircleList* list, CircleListNode* node, int pos) // O(n) 注: n并非链表的长度,而是插入的位置 { TCircleList* sList = (TCircleList*)list; int ret = (sList != NULL) && (pos >= 0) && (node != NULL); int i = 0; if( ret ) { CircleListNode* current = (CircleListNode*)sList; for(i=0; (i<pos) && (current->next != NULL); i++) { current = current->next; } node->next = current->next; current->next = node; //特殊判断 构成环 if( sList->length == 0 ) { sList->slider = node; // 游标默认指向第一个元素 } //特殊判断
if( current == (CircleListNode*)sList )//如果插入的是第一个元素,尾节点要指向新插入的元素
{
CircleListNode* last = CircleList_Get(sList, sList->length - 1);
last->next = current->next;
}
sList->length++; } return ret; } CircleListNode* CircleList_Get(CircleList* list, int pos) // O(n) { TCircleList* sList = (TCircleList*)list; CircleListNode* ret = NULL; int i = 0; if( (sList != NULL) && (pos >= 0) /* 可以转圈 */ ) { CircleListNode* current = (CircleListNode*)sList; for(i=0; i<pos; i++) { current = current->next; } ret = current->next; } return ret; } CircleListNode* CircleList_Delete(CircleList* list, int pos) // O(n) { TCircleList* sList = (TCircleList*)list; CircleListNode* ret = NULL; int i = 0; if( (sList != NULL) && (pos >= 0) && ( sList->length>0)) { CircleListNode* current = (CircleListNode*)sList; CircleListNode* first = sList->header.next; CircleListNode* last = (CircleListNode*)CircleList_Get(sList, sList->length - 1); for(i=0; i<pos; i++) { current = current->next; } ret = current->next; current->next = ret->next; sList->length--; //删除首元素时 if( first == ret ) { // sList->header.next = ret->next; // @todo last->next = ret->next; // @oops 删除首元素时必须要手动处理环 } if( sList->slider == ret ) { sList->slider = ret->next; } if( sList->length == 0 ) //@oops { sList->header.next = NULL; //链表变空时要手动 置为 null, 因为现在是环状,不会存在null值 sList->slider = NULL; } } return ret; } CircleListNode* CircleList_DeleteNode(CircleList* list, CircleListNode* node) // O(n) { TCircleList* sList = (TCircleList*)list; CircleListNode* ret = NULL; int i = 0; if( sList != NULL ) { CircleListNode* current = (CircleListNode*)sList; for(i=0; i<sList->length; i++) { if( current->next == node ) { ret = current->next; break; } current = current->next; } if( ret != NULL ) { CircleList_Delete(sList, i); } } return ret; } CircleListNode* CircleList_Reset(CircleList* list) // O(1) { TCircleList* sList = (TCircleList*)list; CircleListNode* ret = NULL; if( sList != NULL ) { sList->slider = sList->header.next; ret = sList->slider; } return ret; } CircleListNode* CircleList_Current(CircleList* list) // O(1) { TCircleList* sList = (TCircleList*)list; CircleListNode* ret = NULL; if( sList != NULL ) { ret = sList->slider; } return ret; } CircleListNode* CircleList_Next(CircleList* list) // O(1) { TCircleList* sList = (TCircleList*)list; CircleListNode* ret = NULL; if( (sList != NULL) && (sList->slider != NULL) ) { ret = sList->slider; sList->slider = ret->next; } return ret; }
main.c
#include <stdio.h> #include <stdlib.h> #include "CircleList.h" /* run this program using the console pauser or add your own getch, system("pause") or input loop */ struct Value { CircleListNode header; int v; }; int main(int argc, char *argv[]) { int i = 0; CircleList* list = CircleList_Create(); struct Value v1; struct Value v2; struct Value v3; struct Value v4; struct Value v5; struct Value v6; struct Value v7; struct Value v8; v1.v = 1; v2.v = 2; v3.v = 3; v4.v = 4; v5.v = 5; v6.v = 6; v7.v = 7; v8.v = 8; CircleList_Insert(list, (CircleListNode*)&v1, CircleList_Length(list)); CircleList_Insert(list, (CircleListNode*)&v2, CircleList_Length(list)); CircleList_Insert(list, (CircleListNode*)&v3, CircleList_Length(list)); CircleList_Insert(list, (CircleListNode*)&v4, CircleList_Length(list)); CircleList_Insert(list, (CircleListNode*)&v5, 5); CircleList_Delete(list, 0); for(i=0; i<2*CircleList_Length(list); i++) { struct Value* pv = (struct Value*)CircleList_Get(list, i); printf("%d\n", pv->v); } printf("\n"); while( CircleList_Length(list) > 0 ) { struct Value* pv = (struct Value*)CircleList_Delete(list, 0); printf("%d\n", pv->v); } CircleList_Destroy(list); return 0; }
循环链表是单链表基础上的一个增强,可以完全替代单链表。
循环链表的next和current操作可以高效的遍历链表中的所有元素。
双向链表:
单链表的数据元素无法直接访问其前驱元素。
逆序访问单链表的元素是极其耗时的。
双向链表的定义:
在单链表节点中增加一个指向其前驱的pre指针
DLinkList.h
#ifndef _DLINKLIST_H_ #define _DLINKLIST_H_ typedef void DLinkList; typedef struct _tag_DLinkListNode DLinkListNode; struct _tag_DLinkListNode { DLinkListNode* next; DLinkListNode* pre; }; DLinkList* DLinkList_Create(); void DLinkList_Destroy(DLinkList* list); void DLinkList_Clear(DLinkList* list); int DLinkList_Length(DLinkList* list); int DLinkList_Insert(DLinkList* list, DLinkListNode* node, int pos); DLinkListNode* DLinkList_Get(DLinkList* list, int pos); DLinkListNode* DLinkList_Delete(DLinkList* list, int pos); DLinkListNode* DLinkList_DeleteNode(DLinkList* list, DLinkListNode* node); DLinkListNode* DLinkList_Reset(DLinkList* list); DLinkListNode* DLinkList_Current(DLinkList* list); DLinkListNode* DLinkList_Next(DLinkList* list); DLinkListNode* DLinkList_Pre(DLinkList* list); #endif
DLinkList.c
#include <stdio.h> #include <malloc.h> #include "DLinkList.h" typedef struct _tag_DLinkList { DLinkListNode header; DLinkListNode* slider; int length; } TDLinkList; DLinkList* DLinkList_Create() // O(1) { TDLinkList* ret = (TDLinkList*)malloc(sizeof(TDLinkList)); if( ret != NULL ) { ret->length = 0; ret->header.next = NULL; ret->header.pre = NULL; ret->slider = NULL; } return ret; } void DLinkList_Destroy(DLinkList* list) // O(1) { free(list); } void DLinkList_Clear(DLinkList* list) // O(1) { TDLinkList* sList = (TDLinkList*)list; if( sList != NULL ) { sList->length = 0; sList->header.next = NULL; sList->header.pre = NULL; sList->slider = NULL; } } int DLinkList_Length(DLinkList* list) // O(1) { TDLinkList* sList = (TDLinkList*)list; int ret = -1; if( sList != NULL ) { ret = sList->length; } return ret; } int DLinkList_Insert(DLinkList* list, DLinkListNode* node, int pos) // O(n) { TDLinkList* sList = (TDLinkList*)list; int ret = (sList != NULL) && (pos >= 0) && (node != NULL); int i = 0; if( ret ) { DLinkListNode* current = (DLinkListNode*)sList; DLinkListNode* next = NULL; for(i=0; (i<pos) && (current->next != NULL); i++) { current = current->next; } next = current->next; current->next = node; node->next = next; //如果是空链表或最后一个元素则next没有prev if( next != NULL ) { next->pre = node; } node->pre = current; //如果插入的是第一个元素,prev应为 NULL if( sList->length == 0 ) { sList->slider = node; //游标默认指向第一个元素 }
if( current == (CircleListNode*)sList )
{
CircleListNode* last = CircleList_Get(sList, sList->length - 1);
last->next = current->next;
}
sList->length++; } return ret; } DLinkListNode* DLinkList_Get(DLinkList* list, int pos) // O(n) { TDLinkList* sList = (TDLinkList*)list; DLinkListNode* ret = NULL; int i = 0; if( (sList != NULL) && (0 <= pos) && (pos < sList->length) ) { DLinkListNode* current = (DLinkListNode*)sList; for(i=0; i<pos; i++) { current = current->next; } ret = current->next; } return ret; } DLinkListNode* DLinkList_Delete(DLinkList* list, int pos) // O(n) { TDLinkList* sList = (TDLinkList*)list; DLinkListNode* ret = NULL; int i = 0; if( (sList != NULL) && (0 <= pos) && (pos < sList->length) ) { DLinkListNode* current = (DLinkListNode*)sList; DLinkListNode* next = NULL; for(i=0; i<pos; i++) { current = current->next; } ret = current->next; next = ret->next; current->next = next; if( next != NULL )//删除最后一个元素 { next->pre = current; //删除第一个元素,第二元素的prev=null if( current == (DLinkListNode*)sList ) { next->pre = NULL; } } if( sList->slider == ret ) { sList->slider = next; } sList->length--; } return ret; } DLinkListNode* DLinkList_DeleteNode(DLinkList* list, DLinkListNode* node) { TDLinkList* sList = (TDLinkList*)list; DLinkListNode* ret = NULL; int i = 0; if( sList != NULL ) { DLinkListNode* current = (DLinkListNode*)sList; for(i=0; i<sList->length; i++) { if( current->next == node ) { ret = current->next; break; } current = current->next; } if( ret != NULL ) { DLinkList_Delete(sList, i); } } return ret; } DLinkListNode* DLinkList_Reset(DLinkList* list) { TDLinkList* sList = (TDLinkList*)list; DLinkListNode* ret = NULL; if( sList != NULL ) { sList->slider = sList->header.next; ret = sList->slider; } return ret; } DLinkListNode* DLinkList_Current(DLinkList* list) { TDLinkList* sList = (TDLinkList*)list; DLinkListNode* ret = NULL; if( sList != NULL ) { ret = sList->slider; } return ret; } DLinkListNode* DLinkList_Next(DLinkList* list) { TDLinkList* sList = (TDLinkList*)list; DLinkListNode* ret = NULL; if( (sList != NULL) && (sList->slider != NULL) ) { ret = sList->slider; sList->slider = ret->next; } return ret; } DLinkListNode* DLinkList_Pre(DLinkList* list) { TDLinkList* sList = (TDLinkList*)list; DLinkListNode* ret = NULL; if( (sList != NULL) && (sList->slider != NULL) ) { ret = sList->slider; sList->slider = ret->pre; } return ret; }
main.c
#include <stdio.h> #include <stdlib.h> #include "DLinkList.h" /* run this program using the console pauser or add your own getch, system("pause") or input loop */ struct Value { DLinkListNode header; int v; }; int main(int argc, char *argv[]) { int i = 0; DLinkList* list = DLinkList_Create(); struct Value* pv = NULL; struct Value v1; struct Value v2; struct Value v3; struct Value v4; struct Value v5; v1.v = 1; v2.v = 2; v3.v = 3; v4.v = 4; v5.v = 5; DLinkList_Insert(list, (DLinkListNode*)&v1, DLinkList_Length(list)); DLinkList_Insert(list, (DLinkListNode*)&v2, DLinkList_Length(list)); DLinkList_Insert(list, (DLinkListNode*)&v3, DLinkList_Length(list)); DLinkList_Insert(list, (DLinkListNode*)&v4, DLinkList_Length(list)); DLinkList_Insert(list, (DLinkListNode*)&v5, DLinkList_Length(list)); for(i=0; i<DLinkList_Length(list); i++) { pv = (struct Value*)DLinkList_Get(list, i); printf("%d\n", pv->v); } printf("\n"); DLinkList_Delete(list, DLinkList_Length(list)-1); DLinkList_Delete(list, 0); for(i=0; i<DLinkList_Length(list); i++) { pv = (struct Value*)DLinkList_Next(list); printf("%d\n", pv->v); } printf("\n"); DLinkList_Reset(list); DLinkList_Next(list); pv = (struct Value*)DLinkList_Current(list); printf("%d\n", pv->v); DLinkList_DeleteNode(list, (DLinkListNode*)pv); pv = (struct Value*)DLinkList_Current(list); printf("%d\n", pv->v); DLinkList_Pre(list); pv = (struct Value*)DLinkList_Current(list); printf("%d\n", pv->v); printf("Length: %d\n", DLinkList_Length(list)); DLinkList_Destroy(list); return 0; }