错误处理
1.try
当我们认为某些代码可能会出错时,就可以用try
来运行这段代码,如果执行出错,则后续代码不会继续执行,而是直接跳转至错误处理代码,即except
语句块,执行完except
后,如果有finally
语句块,则执行finally
语句块,至此,执行完毕。
下面的代码在计算10 / 0
时会产生一个除法运算错误:
try: print('try...') r = 10 / 0 print('result:', r) except ZeroDivisionError as e: print('except:', e) finally: print('finally...') print('END')
运行结果:
>>> try... except: division by zero finally... END >>>
从输出可以看到,当错误发生时,后续语句print('result:', r)
不会被执行,except
由于捕获到ZeroDivisionError
,因此被执行。最后,finally
语句被执行。然后,程序继续按照流程往下走。
如果把除数0
改成2
,则执行结果如下:
try: print('try...') r = 10 / 2 print('result:', r) except ZeroDivisionError as e: print('except:', e) finally: print('finally...') print('END') >>> try... result: 5.0 finally... END >>>
由于没有错误发生,所以except
语句块不会被执行,但是finally
如果有,则一定会被执行(可以没有finally
语句)。
有时候你会猜测错误有很多种类,如果发生了不同类型的错误,应该由不同的except
语句块处理。所以,可以有多个except
来捕获不同类型的错误:
try: print('try...') r = 10 / int('a') print('result:', r) except ValueError as e: print('ValueError:', e) except ZeroDivisionError as e: print('ZeroDivisionError:', e) finally: print('finally...') print('END') >>> try... ValueError: invalid literal for int() with base 10: 'a' finally... END >>>
我们用一个except
捕获ValueError
,用另一个except
捕获ZeroDivisionError,因为
int()
函数会抛出ValueError
,所以输出了ValueError。
此外,如果没有错误发生,可以在except
语句块后面加一个else
,当没有错误发生时,会自动执行else
语句:
try: print('try...') r = 10 / int('2') print('result:', r) except ValueError as e: print('ValueError:', e) except ZeroDivisionError as e: print('ZeroDivisionError:', e) else: print('no error!') finally: print('finally...') print('END') >>> try... result: 5.0 no error! finally... END >>>
Python的错误其实也是class,所有的错误类型都继承自BaseException
,所以在使用except
时需要注意的是,它不但捕获该类型的错误,还把其子类也“一网打尽”。比如:
try: foo() except ValueError as e: print('ValueError') except UnicodeError as e: print('UnicodeError')
第二个except
永远也捕获不到UnicodeError
,因为UnicodeError
是ValueError
的子类,如果有,也被第一个except
给捕获了。
Python所有的错误都是从BaseException
类派生的,常见的错误类型和继承关系看这里:
https://docs.python.org/3/library/exceptions.html#exception-hierarchy
使用try...except
捕获错误还有一个巨大的好处,就是可以跨越多层调用,比如函数main()
调用foo()
,foo()
调用bar()
,结果bar()
出错了,这时,只要main()
捕获到了,就可以处理:
def foo(s): return 10 / int(s) def bar(s): return foo(s) * 2 def main(): try: bar('0') except Exception as e: print('Error:', e) finally: print('finally...')
也就是说,不需要在每个可能出错的地方去捕获错误,只要在合适的层次去捕获错误就可以了。这样一来,就大大减少了写try...except...finally
的麻烦。
2.调用堆栈
如果错误没有被捕获,它就会一直往上抛,最后被Python解释器捕获,打印一个错误信息,然后程序退出。来看看err.py
:
# err.py: def foo(s): return 10 / int(s) def bar(s): return foo(s) * 2 def main(): bar('0') main()
执行,结果如下:
$ python3 err.py Traceback (most recent call last): File "err.py", line 11, in <module> main() File "err.py", line 9, in main bar('0') File "err.py", line 6, in bar return foo(s) * 2 File "err.py", line 3, in foo return 10 / int(s) ZeroDivisionError: division by zero
出错并不可怕,可怕的是不知道哪里出错了。解读错误信息是定位错误的关键。我们从上往下可以看到整个错误的调用函数链:
错误信息第1行:
Traceback (most recent call last):
告诉我们这是错误的跟踪信息。
第2~3行:
File "err.py", line 11, in <module> main()
调用main()
出错了,在代码文件err.py
的第11行代码,但原因是第9行:
File "err.py", line 9, in main bar('0')
调用bar('0')
出错了,在代码文件err.py
的第9行代码,但原因是第6行:
File "err.py", line 6, in bar return foo(s) * 2
原因是return foo(s) * 2
这个语句出错了,但这还不是最终原因,继续往下看:
File "err.py", line 3, in foo return 10 / int(s)
原因是return 10 / int(s)
这个语句出错了,这是错误产生的源头,因为下面打印了:
ZeroDivisionError: integer division or modulo by zero
根据错误类型ZeroDivisionError
,我们判断,int(s)
本身并没有出错,但是int(s)
返回0
,在计算10 / 0
时出错,至此,找到错误源头。
3.记录错误
如果不捕获错误,自然可以让Python解释器来打印出错误堆栈,但程序也被结束了。既然我们能捕获错误,就可以把错误堆栈打印出来,然后分析错误原因,同时,让程序继续执行下去。
Python内置的logging
模块可以非常容易地记录错误信息:
# err_logging.py import logging def foo(s): return 10 / int(s) def bar(s): return foo(s) * 2 def main(): try: bar('0') except Exception as e: logging.exception(e) main() print('END')
同样是出错,但程序打印完错误信息后会继续执行,并正常退出:
$ python3 err_logging.py ERROR:root:division by zero Traceback (most recent call last): File "err_logging.py", line 13, in main bar('0') File "err_logging.py", line 9, in bar return foo(s) * 2 File "err_logging.py", line 6, in foo return 10 / int(s) ZeroDivisionError: division by zero END
通过配置,logging
还可以把错误记录到日志文件里,方便事后排查。
4.抛出错误
因为错误是class,捕获一个错误就是捕获到该class的一个实例。因此,错误并不是凭空产生的,而是有意创建并抛出的。Python的内置函数会抛出很多类型的错误,我们自己编写的函数也可以抛出错误。
如果要抛出错误,首先根据需要,可以定义一个错误的class,选择好继承关系,然后,用raise
语句抛出一个错误的实例:
# err_raise.py class FooError(ValueError): pass def foo(s): n = int(s) if n==0: raise FooError('invalid value: %s' % s) return 10 / n foo('0')
执行,可以最后跟踪到我们自己定义的错误:
$ python3 err_raise.py Traceback (most recent call last): File "err_throw.py", line 11, in <module> foo('0') File "err_throw.py", line 8, in foo raise FooError('invalid value: %s' % s) __main__.FooError: invalid value: 0
只有在必要的时候才定义我们自己的错误类型。如果可以选择Python已有的内置的错误类型(比如ValueError
,TypeError
),尽量使用Python内置的错误类型。
最后,我们来看另一种错误处理的方式:
# err_reraise.py def foo(s): n = int(s) if n==0: raise ValueError('invalid value: %s' % s) return 10 / n def bar(): try: foo('0') except ValueError as e: print('ValueError!') raise bar()
在bar()
函数中,我们明明已经捕获了错误,但是,打印一个ValueError!
后,又把错误通过raise
语句抛出去了,这不有病么?
其实这种错误处理方式不但没病,而且相当常见。捕获错误目的只是记录一下,便于后续追踪。但是,由于当前函数不知道应该怎么处理该错误,所以,最恰当的方式是继续往上抛,让顶层调用者去处理。好比一个员工处理不了一个问题时,就把问题抛给他的老板,如果他的老板也处理不了,就一直往上抛,最终会抛给CEO去处理。
raise
语句如果不带参数,就会把当前错误原样抛出。此外,在except
中raise
一个Error,还可以把一种类型的错误转化成另一种类型:
try: 10 / 0 except ZeroDivisionError: raise ValueError('input error!')
只要是合理的转换逻辑就可以,但是,决不应该把一个IOError
转换成毫不相干的ValueError
。