算法笔记(四):堆排序

#说的还是感觉不够清晰,感兴趣的勉强看看吧

(一) 

这里的堆指的是堆数据结构,不是Java中的垃圾收集器。堆可以理解为一个近似的完全二叉树,如下图,除了最底层之外该树是完全满的,并且是从左往右填充。(最底层只是不要求填充满,不是不能填充满)

例如:[5, 7, 8, 10, 12, 15](小顶堆)


(二)  堆的性质

软件设计师考试资料中对于堆的定义,要满足下面的公式。

 

(三)  堆排序的过程

 分为2个过程:

1、      建立大顶堆或小顶堆。(简单的说,就是把列表排成符合上面列出来的公式)

2、      对大顶堆或小顶堆进行排序

(四)  建立大顶堆(理解了大顶堆,小顶堆差不多,可以自己尝试实现,可能写一遍就比较清晰了)

从第二点中我们知道,要建立大顶堆,就要维护下面的性质。

 

例如:[15, 12, 10, 8, 7, 5] 就满足上面的性质。(这里我们就当列表的索引从1开始,而不是从0开始)

实现代码:

 1 #建堆
 2 def buildHeap(A):
 3     #这里在首位插入一个X是为了方便比较(因为python列表的索引从0开始),目的是为了方便维护堆的性质(Ki >= K2i 和Ki >= K2i+1)
 4     #例如:传入的列表是[12,5,7,8,10,15],这里就变成 ['X',12,5,7,8,10,15]
 5     #所以我们要处理数据实际上是A[1],A[2]...A[n]
 6     #这个'X'永远用不上,唯一的作用就是让我们要处理的数据从A[1]开始
 7     A.insert(0,'X')
 8     #获取列表中间元素的索引,因为python列表的索引从0开始(但是获取长度的时候却不是这样),所以这里减1后获取我们需要处理的列表的长度A[1]...A[n]
 9     k = (len(A)-1)//2
10     #这边range(k,0,-1) 意思是 i = k ,i = k-1 ...(最小为1,不会等于0)
11     for i in range(k,0,-1):
12         maxHeap(A,i)
13     return A
14 #维护大顶堆的性质
15 def maxHeap(A,i):
16     #为了维护 Ki >= K2i 和Ki >= K2i+1,先获取相应的索引(下标)
17     largest = i
18     k1 = 2*i
19     k2 = 2*i+1
20     #第一个条件:这里加这个条件是因为,递归调用maxHeap的时候,2i有可能大于列表长度,
21     # 在调试模式下看这个函数的执行过程就清楚了。
22     #第二个条件:比较大小(对应到公式就是,如果Ki < K2i)
23     if k1 < len(A) and A[i] < A[k1]:
24         largest = k1
25     if k2 < len(A) and A[largest] < A[k2]:
26         largest = k2
27     #条件成立就交换数据,不成立说明A[i]已经是最大了,函数结束
28     if largest != i:
29         #交换A[i] A[largest]的值
30         A[i],A[largest] = A[largest],A[i]
31         #交换数据后,以该节点为根的子树可能违反大顶堆的性质,所以递归调用自身
32         maxHeap(A,largest)

(五)  对大顶堆进行排序

排序的过程就是在大顶堆的基础上,重复1、2、3步骤(这里请注意,我们的列表的第一个元素是‘X’,需要处理的数据是从A[1]开始的)

1、交换A[1]  A[len(A)-1]。(就是将列表第一个数据和最后一个数据交换,因为交换前是大顶堆,交换后,列表最后一个数据就是最大的了)

2、删除列表末尾的数据,添加到结果列表中。

3、数据交换后,大顶堆的性质肯定不成立了。所以调用maxHeap()维护大顶堆的性质

 1 #堆排序
 2 def heapSort(A):
 3     # 这里返回的是一个大顶堆
 4     A = buildHeap(A)
 5     #python列表的索引从0开始,所以-1后才是最后一个元素的索引
 6     k = len(A)-1
 7     result = []
 8     while k >0:
 9         #将A[1]和A[k]交换
10         A[1],A[k]= A[k],A[1]
11         #删除A列表末尾的数据,添加到result列表中
12         result.insert(0,A.pop())
13         # result.append(A.pop())
14         k -= 1
15         maxHeap(A,1)
16     return result

(六)  完整代码

 1 #建堆
 2 def buildHeap(A):
 3     #首位插入一个元素,方便比较
 4     A.insert(0,'X')
 5     k = (len(A)-1)//2
 6     for i in range(k,0,-1):
 7         maxHeap(A,i)
 8     return A
 9 #维护大顶堆的性质
10 def maxHeap(A,i):
11     largest = i
12     k1 = 2*i
13     k2 = 2*i+1
14     if k1 < len(A) and A[i] < A[k1]:
15         largest = k1
16     if k2 < len(A) and A[largest] < A[k2]:
17         largest = k2
18     if largest != i:
19         A[i],A[largest] = A[largest],A[i]
20         #交换数据后,以该节点为根的子树可能违反大顶堆的性质,所以递归调用自身
21         maxHeap(A,largest)
22 #堆排序
23 def heapSort(A):
24     A = buildHeap(A)
25     k = len(A)-1
26     result = []
27     while k >0:
28         A[1],A[k]= A[k],A[1]
29         result.insert(0,A.pop())
30         # result.append(A.pop())
31         k -= 1
32         maxHeap(A,1)
33     return result
34 
35 B = [12,5,7,8,10,15]
36 
37 print(heapSort(B))

posted @ 2018-06-23 22:59  free赖权华  阅读(316)  评论(0编辑  收藏  举报