题目:https://pintia.cn/problem-sets/1268384564738605056/problems/1281571555112456192

给定一个有N个顶点和E条边的无向图,请用DFS和BFS分别列出其所有的连通集。假设顶点从0到N1编号。进行搜索时,假设我们总是从编号最小的顶点出发,按编号递增的顺序访问邻接点。

输入格式:

输入第1行给出2个整数N(0<N10)和E,分别是图的顶点数和边数。随后E行,每行给出一条边的两个端点。每行中的数字之间用1空格分隔。

输出格式:

按照"{ v1​​ v2​​ ... vk​​ }"的格式,每行输出一个连通集。先输出DFS的结果,再输出BFS的结果。

输入样例:

8 6
0 7
0 1
2 0
4 1
2 4
3 5
 

输出样例:

{ 0 1 4 2 7 }
{ 3 5 }
{ 6 }
{ 0 1 2 7 4 }
{ 3 5 }
{ 6 }


题解:https://blog.csdn.net/qq_40946921/article/details/99696249
代码:

#include<iostream>
#include <set>
#include <map>
#include<queue>
using namespace std;
struct Node {
    bool visited = false;
    set<int> child;
};
map<int, Node> mp;
void dfs(const int& i) {
    cout << i << " ";
    mp[i].visited = true;
    for (auto& j : mp[i].child)
        if (!mp[j].visited) 
            dfs(j);    
}
void bfs(const int& i) {
    queue<int> q;
    q.push(i);
    mp[i].visited = true;
    while (!q.empty()) {
        cout << q.front() << " ";
        for(auto& j:mp[q.front()].child)
            if (!mp[j].visited) {
                mp[j].visited = true;
                q.push(j);
            }
        q.pop();
    }
}
int main(){
    int n, m, a, b;
    cin >> n >> m;
    for (int i = 0; i < m; ++i) {
        cin >> a >> b;
        mp[a].child.insert(b);
        mp[b].child.insert(a);
    }
    for (int i = 0; i < n; i++) {
        if (!mp[i].visited) {
            cout << "{ ";
            dfs(i);
            cout << "}" << endl;
        }
        mp[i].visited = false;
    }
    for (int i = 0; i < n; ++i) {
        if (!mp[i].visited) {
            cout << "{ ";
            bfs(i);
            cout << "}" << endl;
        }
    }
    return 0;
}

 



 posted on 2020-09-05 22:13  邢涌芝  阅读(150)  评论(0编辑  收藏  举报