MapReduce —— MapTask阶段源码分析(Output环节)
Dream car 镇楼 ~ !
接上一节Input
环节,接下来分析 output
环节。代码在runNewMapper()
方法中:
private <INKEY,INVALUE,OUTKEY,OUTVALUE>
void runNewMapper(final JobConf job,final TaskSplitIndex splitIndex,
final TaskUmbilicalProtocol umbilical,TaskReporter reporter) {
.......
// 这个out也被包含在map的上下文当中了,所以在map方法中的输出,调用的是output的write方法
org.apache.hadoop.mapreduce.RecordWriter output = null;
// 记住这个数值 0
if (job.getNumReduceTasks() == 0) { // 判断ReduceTask的数量
output =
new NewDirectOutputCollector(taskContext, job, umbilical, reporter);
} else { // > 0
// 创建一个 Collector 对象 【看构造源码可以知道输出的时候是需要分区的】
output = new NewOutputCollector(taskContext, job, umbilical, reporter);
}
// -----------new NewOutputCollector() begin ------------------
NewOutputCollector(org.apache.hadoop.mapreduce.JobContext jobContext,
JobConf job,
TaskUmbilicalProtocol umbilical,
TaskReporter reporter
) throws IOException, ClassNotFoundException {
//1、 赋值操作。先不仔细看,跳过~ 下一段说
collector = createSortingCollector(job, reporter);
// 2、有多少个reducetask 就有多少个分区
// 回忆:一个分区可以有若干组,相同的key为一组
partitions = jobContext.getNumReduceTasks();
if (partitions > 1) {
partitioner = (org.apache.hadoop.mapreduce.Partitioner<K,V>)
// 常见套路:反射生成实例对象,如果有自定义分区器,则不使用默认的
// 默认的分区算法是简单的hash取模,会保证相同的key在一组
ReflectionUtils.newInstance(jobContext.getPartitionerClass(), job);
} else { // reducetask = 1,所有的组都会进入一个分区
partitioner = new org.apache.hadoop.mapreduce.Partitioner<K,V>() {
// 返回分区号,返回的值固定为 0
public int getPartition(K key, V value, int numPartitions) {
return partitions - 1;
}
};
}
}
// -----------new NewOutputCollector() end ------------------
// -----------write(K key, V value) begin ------------------
// output往外写的时候带着 (k v p) 三元组
public void write(K key, V value) throws IOException, InterruptedException {
collector.collect(key, value,
partitioner.getPartition(key, value, partitions));
// -----------write(K key, V value) end --------------------
..............
}
createSortingCollector(job, reporter)
方法进去:
private <KEY, VALUE> MapOutputCollector<KEY, VALUE>
createSortingCollector(JobConf job, TaskReporter reporter)
throws IOException, ClassNotFoundException {
// 反射创建collector实例
MapOutputCollector<KEY, VALUE> collector
= (MapOutputCollector<KEY, VALUE>)
// 常见套路:如果没有用户自定义collector,那么就取默认的
ReflectionUtils.newInstance(
job.getClass(JobContext.MAP_OUTPUT_COLLECTOR_CLASS_ATTR,
// MapOutputBuffer 这玩意牛逼,后边再说。
MapOutputBuffer.class, MapOutputCollector.class), job);
MapOutputCollector.Context context =
new MapOutputCollector.Context(this, job, reporter);
// 初始化的就是 MapOutputBuffer,真正要使用它之前要初始化。
// 重要方法,下段分析
collector.init(context);
return collector;
}
重头戏了,进入初始化环节:collector.init(context)
,删除非核心代码,清清爽爽开开心心读源码 ~
public void init(MapOutputCollector.Context context) {
// 0.随便看看
job = context.getJobConf();
reporter = context.getReporter();
mapTask = context.getMapTask();
mapOutputFile = mapTask.getMapOutputFile();
sortPhase = mapTask.getSortPhase();
spilledRecordsCounter = reporter.getCounter(TaskCounter.SPILLED_RECORDS);
partitions = job.getNumReduceTasks();
rfs = ((LocalFileSystem)FileSystem.getLocal(job)).getRaw();
// 1.溢写的阈值 0.8 , 剩下的 0.2 空间还可以继续使用
final float spillper =
job.getFloat(JobContext.MAP_SORT_SPILL_PERCENT, (float)0.8);
// 2.缓冲区的默认大小
final int sortmb = job.getInt(JobContext.IO_SORT_MB, 100);
indexCacheMemoryLimit = job.getInt(JobContext.INDEX_CACHE_MEMORY_LIMIT,
INDEX_CACHE_MEMORY_LIMIT_DEFAULT);
// 3. 排序器:如果没有自定义,就使用默认的快排算法
// 排序的本质就是在做比较:字典序或者数值序,所以排序器要用到【比较器】后边会说
sorter = ReflectionUtils.newInstance(job.getClass("map.sort.class",
QuickSort.class, IndexedSorter.class), job);
//--------------------这可就是大名鼎鼎的环形缓冲区,真™牛X的设计---------------
int maxMemUsage = sortmb << 20;
maxMemUsage -= maxMemUsage % METASIZE;
kvbuffer = new byte[maxMemUsage];
bufvoid = kvbuffer.length;
kvmeta = ByteBuffer.wrap(kvbuffer)
.order(ByteOrder.nativeOrder())
.asIntBuffer();
setEquator(0);
bufstart = bufend = bufindex = equator;
kvstart = kvend = kvindex;
maxRec = kvmeta.capacity() / NMETA;
softLimit = (int)(kvbuffer.length * spillper);
bufferRemaining = softLimit;
//--------------------------------------------------------------------
// k/v serialization
// 4.获取【比较器】进行排序。如果没有自定义,就使用默认的。
// key 类型都是Hadoop封装的可序列化类,自身都带比较器
comparator = job.getOutputKeyComparator();
.............
// output counters
.............
// compression:数据压缩
............
// combiner:相同的key在map端做一次合并,减少reduce拉取的数据量.为我们提供了调优接口
// 俗称:小reduce ,会在map端发生一次或多次. 之后的文章会介绍这个源码
.............
// 4. 溢写线程
// 当环形缓冲区的占用到80%,将缓冲区中的数据写入到磁盘
// 此时的缓冲区是多个线程共享的:有线程在往磁盘写,有线程在往缓冲区写
// 怎样防止读写线程碰撞?答:反向写数据到缓冲区
spillInProgress = false;
minSpillsForCombine = job.getInt(JobContext.MAP_COMBINE_MIN_SPILLS, 3);
spillThread.setDaemon(true);
spillThread.setName("SpillThread");
spillLock.lock();
try {
spillThread.start();
while (!spillThreadRunning) {
spillDone.await();
}
} catch (InterruptedException e) {
} finally {
spillLock.unlock();
}
}
后边源码也没必要一行行看了,直接文字总结描述了
MapOutBuffer:
map 输出的K-V会被序列化成字节数组,计算出分区号,最终是三元组<k,v,p>
buffer 是map过程使用到的环形缓冲区:
- 本质是字节数组;
- 赤道:两端分别存放K-V,索引;
- 索引:对K-V的索引,固定长度16B,4个int:分区号P,K的偏移量,V的偏移量,V的数据长度;
- 数据填充到缓冲区的阈值 80% 时,启动溢写线程;
- 快速排序 80%的数据,同时Map输出的线程向缓冲区的剩余部分写入;
- 快速排序的过程,比较的是key,但是移动的是索引;
- 溢写时只要排序后的索引,溢出数据就是有序的;
注意:排序是二次排序:
- 分区有序:reduce拉取数据是按照分区拉取;
- 分区内key 有序:因为reduce计算是按照分组计算;
调优:在溢写过程中会发生combiner
- 其实就是一个 map 里的reduce,按照组进行统计;
- 发生时间点:排序之后相同的key放在一起了,开始combiner,然后溢写;
minSpillsForCombine = job.getInt(JobContext.MAP_COMBINE_MIN_SPILLS, 3)
,最终map结束输出过程buffer会溢出多个小文件,当文件的个数达到3个时,map会把小文件合并,避免文件的碎片化【小文件问题,后边还会提及】
附 溢写线程相关源码:
protected class SpillThread extends Thread {
@Override
public void run() {
spillLock.lock();
spillThreadRunning = true;
try {
while (true) {
spillDone.signal();
while (!spillInProgress) {
spillReady.await();
}
try {
spillLock.unlock();
// 排序并溢写会被调用
sortAndSpill();
} catch (Throwable t) {
sortSpillException = t;
} finally {
spillLock.lock();
if (bufend < bufstart) {
bufvoid = kvbuffer.length;
}
kvstart = kvend;
bufstart = bufend;
spillInProgress = false;
}
}
} catch (InterruptedException e) {
Thread.currentThread().interrupt();
} finally {
spillLock.unlock();
spillThreadRunning = false;
}
}
}
sortAndSpill()
private void sortAndSpill() throws IOException, ClassNotFoundException,
InterruptedException {
//approximate the length of the output file to be the length of the
//buffer + header lengths for the partitions
final long size = (bufend >= bufstart
? bufend - bufstart
: (bufvoid - bufend) + bufstart) +
partitions * APPROX_HEADER_LENGTH;
FSDataOutputStream out = null;
try {
// create spill file
final SpillRecord spillRec = new SpillRecord(partitions);
final Path filename =
mapOutputFile.getSpillFileForWrite(numSpills, size);
out = rfs.create(filename);
final int mstart = kvend / NMETA;
final int mend = 1 + // kvend is a valid record
(kvstart >= kvend
? kvstart
: kvmeta.capacity() + kvstart) / NMETA;
sorter.sort(MapOutputBuffer.this, mstart, mend, reporter);
int spindex = mstart;
final IndexRecord rec = new IndexRecord();
final InMemValBytes value = new InMemValBytes();
for (int i = 0; i < partitions; ++i) {
IFile.Writer<K, V> writer = null;
try {
long segmentStart = out.getPos();
writer = new Writer<K, V>(job, out, keyClass, valClass, codec,
spilledRecordsCounter);
// 会调用combiner
if (combinerRunner == null) {
// spill directly
DataInputBuffer key = new DataInputBuffer();
while (spindex < mend &&
kvmeta.get(offsetFor(spindex % maxRec) + PARTITION) == i) {
final int kvoff = offsetFor(spindex % maxRec);
int keystart = kvmeta.get(kvoff + KEYSTART);
int valstart = kvmeta.get(kvoff + VALSTART);
key.reset(kvbuffer, keystart, valstart - keystart);
getVBytesForOffset(kvoff, value);
writer.append(key, value);
++spindex;
}
} else {
int spstart = spindex;
while (spindex < mend &&
kvmeta.get(offsetFor(spindex % maxRec)
+ PARTITION) == i) {
++spindex;
}
// Note: we would like to avoid the combiner if we've fewer
// than some threshold of records for a partition
if (spstart != spindex) {
combineCollector.setWriter(writer);
RawKeyValueIterator kvIter =
new MRResultIterator(spstart, spindex);
combinerRunner.combine(kvIter, combineCollector);
}
}