机器学习之特征工程-降维(1.2)
降维的两种方式
- 特征选择
- 主成分分析(可以理解一种特征提取的方式)
降维:是指在某些限定条件下,降低随机变量(特征)个数,得到一组“不相关”主变量的过程
特征选择:数据中包含冗余或无关变量(或称特征、属性、指标等),旨在从原有特征中找出主要特征。
- Filter(过滤式):主要探究特征本身特点、特征与特征和目标值之间关联
- 方差选择法:低方差特征过滤
- 相关系数
- Embedded (嵌入式):算法自动选择特征(特征与目标值之间的关联)
- 决策树:信息熵、信息增益
- 正则化:L1、L2
- 深度学习:卷积等
低方差特征过滤及皮尔逊相关系数降维案例:
from sklearn.feature_selection import VarianceThreshold from scipy.stats import pearsonr def variance_demo(): """ 过滤低方差特征 :return: """ # 1、获取数据 data = pd.read_csv("factor_returns.csv") data = data.iloc[:, 1:-2] print("data:\n", data) # 2、实例化一个转换器类 transfer = VarianceThreshold(threshold=10) # 3、调用fit_transform data_new = transfer.fit_transform(data) print("data_new:\n", data_new, data_new.shape) # 计算某两个变量之间的相关系数 r1 = pearsonr(data["pe_ratio"], data["pb_ratio"]) print("相关系数:\n", r1) r2 = pearsonr(data['revenue'], data['total_expense']) print("revenue与total_expense之间的相关性:\n", r2) return None
备注:pearsonr返回值有两个,第一个是相关系数
相关系数的值介于–1与+1之间,即–1≤ r ≤+1。其性质如下:
- 当r>0时,表示两变量正相关,r<0时,两变量为负相关
- 当|r|=1时,表示两变量为完全相关,当r=0时,表示两变量间无相关关系
- 当0<|r|<1时,表示两变量存在一定程度的相关。且|r|越接近1,两变量间线性关系越密切;|r|越接近于0,表示两变量的线性相关越弱
- 一般可按三级划分:|r|<0.4为低度相关;0.4≤|r|<0.7为显著性相关;0.7≤|r|<1为高度线性相关
那 什么是主成分分析(PCA)
-
定义:高维数据转化为低维数据的过程,在此过程中可能会舍弃原有数据、创造新的变量
-
作用:是数据维数压缩,尽可能降低原数据的维数(复杂度),损失少量信息。
- 应用:回归分析或者聚类分析当中
from sklearn.decomposition import PCA def pca_demo(): """ PCA降维 :return: """ data = [[2,8,4,5], [6,3,0,8], [5,4,9,1]] # 1、实例化一个转换器类,n_components为小数则保留百分比的的信息,为整数则保留到多少个特征 # transfer = PCA(n_components=0.95) transfer = PCA(n_components=3) # 2、调用fit_transform data_new = transfer.fit_transform(data) print("data_new:\n", data_new) return None