OpenSees开发(二)源码分析——平面桁架静力有限元分析实例
这是一个平面桁架静力分析算例,代码位于 OpenSees2.3.0\EXAMPLES\Example1\main.cpp
这里先给出原始源代码:
// standard C++ includes #include <stdlib.h> #include <OPS_Globals.h> #include <StandardStream.h> #include <ArrayOfTaggedObjects.h> // includes for the domain classes #include <Domain.h> #include <Node.h> #include <Truss.h> #include <ElasticMaterial.h> #include <SP_Constraint.h> #include <LoadPattern.h> #include <LinearSeries.h> #include <NodalLoad.h> // includes for the analysis classes #include <StaticAnalysis.h> #include <AnalysisModel.h> #include <Linear.h> #include <PenaltyConstraintHandler.h> #include <DOF_Numberer.h> #include <RCM.h> #include <LoadControl.h> #include <BandSPDLinSOE.h> #include <BandSPDLinLapackSolver.h> // init the global variabled defined in OPS_Globals.h StandardStream sserr; OPS_Stream *opserrPtr = &sserr; double ops_Dt = 0; // Domain *ops_TheActiveDomain = 0; Element *ops_TheActiveElement = 0; // main routine int main(int argc, char **argv) { // // now create a domain and a modelbuilder // and build the model // Domain *theDomain = new Domain(); // create the nodes using constructor: // Node(tag, ndof, crd1, crd2) // and then add them to the domain Node *node1 = new Node(1, 2, 0.0, 0.0); Node *node2 = new Node(2, 2, 144.0, 0.0); Node *node3 = new Node(3, 2, 168.0, 0.0); Node *node4 = new Node(4, 2, 72.0, 96.0); theDomain->addNode(node1); theDomain->addNode(node2); theDomain->addNode(node3); theDomain->addNode(node4); // create an elastic material using constriuctor: // ElasticMaterialModel(tag, E) UniaxialMaterial *theMaterial = new ElasticMaterial(1, 3000); // create the truss elements using constructor: // Truss(tag, dim, nd1, nd2, Material &,A) // and then add them to the domain Truss *truss1 = new Truss(1, 2, 1, 4, *theMaterial, 10.0); Truss *truss2 = new Truss(2, 2, 2, 4, *theMaterial, 5.0); Truss *truss3 = new Truss(3, 2, 3, 4, *theMaterial, 5.0); theDomain->addElement(truss1); theDomain->addElement(truss2); theDomain->addElement(truss3); // create the single-point constraint objects using constructor: // SP_Constraint(tag, nodeTag, dofID, value) // and then add them to the domain SP_Constraint *sp1 = new SP_Constraint(1, 1, 0, 0.0); SP_Constraint *sp2 = new SP_Constraint(2, 1, 1, 0.0); SP_Constraint *sp3 = new SP_Constraint(3, 2, 0, 0.0); SP_Constraint *sp4 = new SP_Constraint(4, 2, 1, 0.0); SP_Constraint *sp5 = new SP_Constraint(5, 3, 0, 0.0); SP_Constraint *sp6 = new SP_Constraint(6, 3, 1, 0.0); theDomain->addSP_Constraint(sp1); theDomain->addSP_Constraint(sp2); theDomain->addSP_Constraint(sp3); theDomain->addSP_Constraint(sp4); theDomain->addSP_Constraint(sp5); theDomain->addSP_Constraint(sp6); // construct a linear time series object using constructor: // LinearSeries() TimeSeries *theSeries = new LinearSeries(); // construct a load pattren using constructor: // LoadPattern(tag) // and then set it's TimeSeries and add it to the domain LoadPattern *theLoadPattern = new LoadPattern(1); theLoadPattern->setTimeSeries(theSeries); theDomain->addLoadPattern(theLoadPattern); // construct a nodal load using constructor: // NodalLoad(tag, nodeID, Vector &) // first construct a Vector of size 2 and set the values NOTE C INDEXING // then construct the load and add it to the domain Vector theLoadValues(2); theLoadValues(0) = 100.0; theLoadValues(1) = -50.0; NodalLoad *theLoad = new NodalLoad(1, 4, theLoadValues); theDomain->addNodalLoad(theLoad, 1); // create an Analysis object to perform a static analysis of the model // - constructs: // AnalysisModel of type AnalysisModel, // EquiSolnAlgo of type Linear // StaticIntegrator of type LoadControl // ConstraintHandler of type Penalty // DOF_Numberer which uses RCM // LinearSOE of type Band SPD // and then the StaticAnalysis object AnalysisModel *theModel = new AnalysisModel(); EquiSolnAlgo *theSolnAlgo = new Linear(); StaticIntegrator *theIntegrator = new LoadControl(1.0, 1, 1.0, 1.0); ConstraintHandler *theHandler = new PenaltyConstraintHandler(1.0e8,1.0e8); RCM *theRCM = new RCM(); DOF_Numberer *theNumberer = new DOF_Numberer(*theRCM); BandSPDLinSolver *theSolver = new BandSPDLinLapackSolver(); LinearSOE *theSOE = new BandSPDLinSOE(*theSolver); StaticAnalysis theAnalysis(*theDomain, *theHandler, *theNumberer, *theModel, *theSolnAlgo, *theSOE, *theIntegrator); // perform the analysis & print out the results for the domain int numSteps = 1; theAnalysis.analyze(numSteps); opserr << *theDomain; exit(0); }
接下去一步一步解释代码:
// 创建一个有限元模型 Domain *theDomain = new Domain();
// 创建4个节点,详细见说明1 Node *node1 = new Node(1, 2, 0.0, 0.0); Node *node2 = new Node(2, 2, 144.0, 0.0); Node *node3 = new Node(3, 2, 168.0, 0.0); Node *node4 = new Node(4, 2, 72.0, 96.0);
说明1:Node构造函数
位于OpenSees2.3.0\SRC\domain\node\Node.cpp
源码定义如下:
*****************************************************
Node::Node(int tag, int ndof, double Crd1, double Crd2)
:DomainComponent(tag,NOD_TAG_Node),
numberDOF(ndof), theDOF_GroupPtr(0),
Crd(0), 。。。。。。。
{
Crd = new Vector(2);
(*Crd)(0) = Crd1;
(*Crd)(1) = Crd2;
。。。。。。
*****************************************************
参数tag为该节点的标签,指定给基类
:DomainComponent(tag,NOD_TAG_Node), NOD_TAG_Node是一个枚举值,表明该DomainComponent对象是一个节点类型;
ndof该节点的自由度,本例中,节点都为两个自由度;
Crd1, Crd2为该2维节点的坐标,赋于成员变量Crd,这是一个类数组的数据类型,创建了一个含该点坐标信息的数组。
// 将4个节点对象加入有限元模型中 // 如果两个node对象tag相同,则会返回失败 theDomain->addNode(node1); theDomain->addNode(node2); theDomain->addNode(node3); theDomain->addNode(node4);
// 创建一个弹性材料,见说明2 UniaxialMaterial *theMaterial = new ElasticMaterial(1, 3000);
说明2:创建材料对象
*****************************************************
UniaxialMaterial *theMaterial = new ElasticMaterial(1,3000);
*****************************************************
UniaxialMaterial类官方说明:
http://opensees.berkeley.edu/OpenSees/api/doxygen2/html/classElasticMaterial.html
其中,ElasticMaterial为UniaxialMaterial派生类
意为理想弹性材料
http://opensees.berkeley.edu/wiki/index.php/Elastic_Uniaxial_Material
构造函数
申明:
*****************************************************
ElasticMaterial(int tag, double E, double eta =0.0);
*****************************************************
实现:
*****************************************************
ElasticMaterial::ElasticMaterial(int tag, double e, doubleet)
:UniaxialMaterial(tag,MAT_TAG_ElasticMaterial),
trialStrain(0.0), trialStrainRate(0.0),
E(e), eta(et), parameterID(0)
{
}
*****************************************************
其中,第一个参数tag为标签,传递给基类构造函数,e为弹性模型,et为材料阻尼比,默认为0.
// 创建一个工况,编号为1,暂时未知 LoadPattern *theLoadPattern = new LoadPattern(1); theDomain->addLoadPattern(theLoadPattern); // 暂时未知这句话什么意思 theLoadPattern->setTimeSeries(new LinearSeries()); // 创建一个节点荷载向量 Vector theLoadValues(2); theLoadValues(0) = 100.0; theLoadValues(1) = -50.0; // 第一个参数tag标签,第二个参数表明施加点荷载的节点tag,第三个参数是一个向量,表明在第一维度施加100个单位力,第二维度施加反方向50单位力 NodalLoad *theLoad = new NodalLoad(1, 4, theLoadValues); // 将NodalLoad对象加入模型,1表示加入的工况编号 theDomain->addNodalLoad(theLoad, 1); // 如果new NodalLoad后的节点编号未在模型中找到,返回失败 // 如果addNodalLoad第2个参数所表示的工况编号不存在,返回失败
这里为了避免内存泄漏,也为了使代码的封装性更强,我更改了一部分代码:
AnalysisModel *theModel = new AnalysisModel(); EquiSolnAlgo *theSolnAlgo = new Linear(); StaticIntegrator *theIntegrator = new LoadControl(1.0, 1, 1.0, 1.0); ConstraintHandler *theHandler = new PenaltyConstraintHandler(1.0e8,1.0e8); RCM *theRCM = new RCM(); DOF_Numberer *theNumberer = new DOF_Numberer(*theRCM); BandSPDLinSolver *theSolver = new BandSPDLinLapackSolver(); LinearSOE *theSOE = new BandSPDLinSOE(*theSolver); StaticAnalysis theAnalysis(*theDomain, *theHandler, *theNumberer, *theModel, *theSolnAlgo, *theSOE, *theIntegrator);改为:
// 分析对象封装 struct MyStaticAnalysis : public StaticAnalysis { ConstraintHandler *pConstraintHandler; DOF_Numberer *pDOF_Numberer; AnalysisModel *pAnalysisModel; EquiSolnAlgo *pEquiSolnAlgo; LinearSOE *pLinearSOE; StaticIntegrator *pStaticIntegrator; MyStaticAnalysis(Domain *theDomain) : StaticAnalysis(*theDomain, *(pConstraintHandler = new PenaltyConstraintHandler(1.0e8,1.0e8)), *(pDOF_Numberer = new DOF_Numberer(*(new RCM()))), *(pAnalysisModel = new AnalysisModel()), *(pEquiSolnAlgo = new Linear()), *(pLinearSOE = new BandSPDLinSOE(*(new BandSPDLinLapackSolver()))), *(pStaticIntegrator = new LoadControl(1.0, 1, 1.0, 1.0))) {} ~MyStaticAnalysis(){ delete pConstraintHandler; delete pDOF_Numberer; delete pAnalysisModel; delete pEquiSolnAlgo; delete pLinearSOE; delete pStaticIntegrator; } };
// 实例化分析模型对象 MyStaticAnalysis &theAnalysis = *(new MyStaticAnalysis(theDomain)); // perform the analysis & print out the results for the domain int numSteps = 1; theAnalysis.analyze(numSteps); // 释放分析对象 delete &theAnalysis; // 模型信息打印 opserr << *theDomain;
// 查看4节点两个自由度上的位移 Vector const &disp4node = theDomain->getNode(4)->getDisp(); printf("x4: %lf, z4: %lf\n", disp4node[0], disp4node[1]); // 查看3个桁架单元的轴力 Information trussInfo; for(int i=0; i<3; ++i) { Truss *pTruss = (Truss *)theDomain->getElement(i+1); pTruss->getResponse(2, trussInfo); printf("N%d: %lf\n", i+1, trussInfo.theDouble); } // Domain类的析构会释放加入domain的所有元素,所以node之类的对象不用单独析构 delete theDomain;
编译——运行——屏幕输出:
第一自由度位移 0.530094,第二自由度位移-0.177894
杆件1轴力:43.94
杆件2轴力:-57.55
杆件3轴力:-55.31
与sap2000计算结果一致:
sap2000模型文件*.SDB(v14)和*.s2k文件,及修改后的源文件 first.cpp下载:
http://pan.baidu.com/s/1dDDKnb7