BZOJ 1135: [POI2009]Lyz
首先是二分图匹配
Hall定理
令a[i]表示尺码为i的人有多少个
然后是任何的l,r a[i]之和<=(r-l+1+d)*k
->任何的l,r (a[i]-k)之和<=d*k(定值)
线段树维护最大子段和
#include<cstdio> #include<algorithm> using namespace std; int n,m,k,d; long long tree_sum[800005],tree_max[800005],tree_maxl[800005],tree_maxr[800005]; void update(int t){ tree_sum[t]=tree_sum[t<<1]+tree_sum[t<<1|1]; tree_maxl[t]=max(tree_maxl[t<<1],tree_maxl[t<<1|1]+tree_sum[t<<1]); tree_maxr[t]=max(tree_maxr[t<<1|1],tree_maxr[t<<1]+tree_sum[t<<1|1]); tree_max[t]=max(tree_max[t<<1],tree_max[t<<1|1]); tree_max[t]=max(tree_max[t],tree_maxr[t<<1]+tree_maxl[t<<1|1]); } void build(int t,int l,int r){ if (l==r){ tree_max[t]=tree_maxl[t]=tree_maxr[t]=tree_sum[t]=-k; return; } int mid=(l+r)>>1; build(t<<1,l,mid); build(t<<1|1,mid+1,r); update(t); } void modify(int t,int l,int r,int x,int y){ if (l==r){ tree_max[t]+=y; tree_maxl[t]+=y; tree_maxr[t]+=y; tree_sum[t]+=y; return; } int mid=(l+r)>>1; if (x<=mid) modify(t<<1,l,mid,x,y); else modify(t<<1|1,mid+1,r,x,y); update(t); } int main(){ scanf("%d%d%d%d",&n,&m,&k,&d); build(1,1,n); for (int i=1; i<=m; i++){ int x,y; scanf("%d%d",&x,&y); modify(1,1,n,x,y); if (tree_max[1]<=1ll*d*k) printf("TAK\n"); else printf("NIE\n"); } return 0; }