LeetCode 146. LRU CacheLRU缓存机制 (C++/Java)

题目:

Design and implement a data structure for Least Recently Used (LRU) cache. It should support the following operations: get and put.

get(key) - Get the value (will always be positive) of the key if the key exists in the cache, otherwise return -1.
put(key, value) - Set or insert the value if the key is not already present. When the cache reached its capacity, it should invalidate the least recently used item before inserting a new item.

The cache is initialized with a positive capacity.

Follow up:
Could you do both operations in O(1) time complexity?

Example:

LRUCache cache = new LRUCache( 2 /* capacity */ );

cache.put(1, 1);
cache.put(2, 2);
cache.get(1);       // returns 1
cache.put(3, 3);    // evicts key 2
cache.get(2);       // returns -1 (not found)
cache.put(4, 4);    // evicts key 1
cache.get(1);       // returns -1 (not found)
cache.get(3);       // returns 3
cache.get(4);       // returns 4

分析:

设计和实现一个  LRU (最近最少使用) 缓存机制。它应该支持以下操作: 获取数据 get 和 写入数据 put 。

获取数据 get(key) - 如果密钥 (key) 存在于缓存中,则获取密钥的值(总是正数),否则返回 -1。
写入数据 put(key, value) - 如果密钥不存在,则写入其数据值。当缓存容量达到上限时,它应该在写入新数据之前删除最近最少使用的数据值,从而为新的数据值留出空间。

按照所给的例子看一下cache内部是如何变化的。

  front back result
put(1, 1) (1, 1)    
put(2, 2) (2, 2) (1, 1)  
get(1) (1, 1) (2, 2) 1
put(3, 3) (3, 3) (1, 1)  
get(2) (3, 3) (1, 1) -1
put(4, 4) (4, 4) (3, 3)  
get(1) (4, 4) (3, 3) -1
get(3) (3, 3) (4, 4) 3
get(4) (4, 4) (3, 3) 4

很清楚的就理解了LRU的机制,当get的key在cache中已经存在时,就将存储的内容放到最前面,get的key不存在时就返回-1。

put的新的key-value时,如果达到了容量上限,就删除一个最近最少使用的,实际上也是队尾的元素,然后将新的key-value存储到最前面。

因为我们每次要O(1)的复杂度,所以可以使用hashmap来get数据,而当容量达到上限时,要删除最近最少使用的,且要在最前面put进新的数据,要使用一个双向链表,来保证O(1)的时间复杂度。

java中可以使用LinkeHashMap来实现LRU缓存。

程序:

C++

class LRUCache {
public:
    LRUCache(int capacity) {
        cap = capacity;
    }
    
    int get(int key) {
        auto it = map.find(key);
        if(it == map.end())
            return -1;
        l.splice(l.begin(), l, it->second);
        return it->second->second;
    }
    
    void put(int key, int value) {
        auto it = map.find(key);
        if(it != map.end()){
            l.erase(it->second);
        }
        l.push_front(make_pair(key, value));
        map[key] = l.begin();
        if (map.size() > cap) {
            int k = l.rbegin()->first;
            l.pop_back();
            map.erase(k);
        }
    }
private:
    int cap;
    list<pair<int, int>> l;
    unordered_map<int, list<pair<int, int>>::iterator> map;
};

Java

class LRUCache {

    public LRUCache(int capacity) {
        this.cap = capacity;
        this.map = new HashMap<>();
        this.dummyHead = new Node(0, 0);
        this.tail = new Node(0, 0);

        dummyHead.prev = null;
        dummyHead.next = tail;
        tail.prev = dummyHead;
        tail.next = null;
    }

    public int get(int key) {
        if(!map.containsKey(key))
            return -1;
        Node node = map.get(key);
        removeNode(node);
        addToHead(node);
        return node.val;
    }

    public void put(int key, int value) {
        if(map.containsKey(key)){
            Node node = map.get(key);
            removeNode(node);
            map.remove(key);
            size--;
        }
        Node node = new Node(key, value);
        map.put(key, node);
        if(size < cap){
            addToHead(node);
            size++;
        }else {
            map.remove(tail.prev.key);
            removeNode(tail.prev);
            addToHead(node);
        }
    }

    private void removeNode(Node node){
        node.prev.next = node.next;
        node.next.prev = node.prev;
    }

    private void addToHead(Node node){
        node.next = dummyHead.next;
        node.next.prev = node;
        dummyHead.next = node;
        node.prev = dummyHead;
    }

    class Node{
        int key;
        int val;
        Node prev;
        Node next;
        public Node(int key, int val){
            this.key = key;
            this.val = val;
        }
    }
    private int cap;
    private Map<Integer, Node> map;
    private Node dummyHead;
    private Node tail;
    private int size;
}
class LRUCache {

    public LRUCache(int capacity) {
        this.capacity = capacity;
        map = new LinkedHashMap<>();
    }
    
    public int get(int key) {
        if(map.containsKey(key)) {
            int value = map.get(key);
            map.remove(key);
            map.put(key, value);
            return value;
        }
        return -1;
    }
    
    public void put(int key, int value) {
        if(map.containsKey(key)) {
            map.remove(key);
        }
        map.put(key, value);
        if(map.size() > capacity) {
            map.remove(map.keySet().iterator().next());
        }
    }
    private int capacity;
    private LinkedHashMap<Integer, Integer> map;
}
posted @ 2020-01-06 00:24  silentteller  阅读(713)  评论(0编辑  收藏  举报