sklearn 划分数据集。
1.sklearn.model_selection.train_test_split随机划分训练集和测试集
函数原型:
X_train,X_test, y_train, y_test =cross_validation.train_test_split(train_data,train_target,test_size=0.4, random_state=0)
参数解释:
train_data:所要划分的样本特征集
train_target:所要划分的样本结果
test_size:样本占比,如果是整数的话就是样本的数量
random_state:是随机数的种子。
随机数种子的意义在于,如何区分这个数据集,完全是按照随机数种子来决定,至于怎么决定,我们其实并不关心,比如你分了两次,随机种子都是0,那么你得到的两次划分也一定是一样的。
1 fromsklearn.cross_validation import train_test_split 2 train= loan_data.iloc[0: 55596, :] 3 test= loan_data.iloc[55596:, :] 4 # 避免过拟合,采用交叉验证,验证集占训练集20%,固定随机种子(random_state) 5 train_X,test_X, train_y, test_y = train_test_split(train, 6 target, 7 test_size = 0.2, 8 random_state = 0) 9 train_y= train_y['label'] 10 test_y= test_y['label']
、
2. kl-fold 划分
- 将全部训练集S分成k个不相交的子集,假设S中的训练样例个数为m,那么每一个自己有m/k个训练样例,相应的子集为{s1,s2,...,sk}
- 每次从分好的子集里面,拿出一个作为测试集,其他k-1个作为训练集
- 在k-1个训练集上训练出学习器模型
- 把这个模型放到测试集上,得到分类率的平均值,作为该模型或者假设函数的真实分类率
这个方法充分利用了所以样本,但计算比较繁琐,需要训练k次,测试k次
import numpy as np #KFold from sklearn.model_selection import KFold X=np.array([[1,2],[3,4],[5,6],[7,8],[9,10],[11,12]]) y=np.array([1,2,3,4,5,6]) kf=KFold(n_splits=2) #分成几个组 kf.get_n_splits(X) print(kf) for train_index,test_index in kf.split(X): print("Train Index:",train_index,",Test Index:",test_index) X_train,X_test=X[train_index],X[test_index] y_train,y_test=y[train_index],y[test_index] #print(X_train,X_test,y_train,y_test) #KFold(n_splits=2, random_state=None, shuffle=False) #Train Index: [3 4 5] ,Test Index: [0 1 2] #Train Index: [0 1 2] ,Test Index: [3 4 5]
more:http://www.cnblogs.com/nolonely/p/7007432.html