机器学习笔记:为什么要对数据进行归一化处理?
文章来自知乎,作者hit nlper 忆臻
转自:https://zhuanlan.zhihu.com/p/27627299
在喂给机器学习模型的数据中,对数据要进行归一化的处理。
为什么要进行归一化处理,下面从寻找最优解这个角度给出自己的看法。
例子
假定为预测房价的例子,自变量为面积,房间数两个,因变量为房价。
那么可以得到的公式为:
其中代表房间数,
代表
变量前面的系数。
其中代表面积,
代表
变量前面的系数。
首先我们祭出两张图代表数据是否均一化的最优解寻解过程。
未归一化:
归一化之后
为什么会出现上述两个图,并且它们分别代表什么意思。
我们在寻找最优解的过程也就是在使得损失函数值最小的theta1,theta2。
上述两幅图代码的是损失函数的等高线。
我们很容易看出,当数据没有归一化的时候,面积数的范围可以从0~1000,房间数的范围一般为0~10,可以看出面积数的取值范围远大于房间数。
影响
这样造成的影响就是在画损失函数的时候,
数据没有归一化的表达式,可以为:
造成图像的等高线为类似椭圆形状,最优解的寻优过程就是像下图所示:
而数据归一化之后,损失函数的表达式可以表示为:
其中变量的前面系数几乎一样,则图像的等高线为类似圆形形状,最优解的寻优过程像下图所示:
从上可以看出,数据归一化后,最优解的寻优过程明显会变得平缓,更容易正确的收敛到最优解。
这也是数据为什么要归一化的一个原因。
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· go语言实现终端里的倒计时
· 如何编写易于单元测试的代码
· 10年+ .NET Coder 心语,封装的思维:从隐藏、稳定开始理解其本质意义
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· 分享一个免费、快速、无限量使用的满血 DeepSeek R1 模型,支持深度思考和联网搜索!
· 基于 Docker 搭建 FRP 内网穿透开源项目(很简单哒)
· ollama系列01:轻松3步本地部署deepseek,普通电脑可用
· 25岁的心里话
· 按钮权限的设计及实现