sklearn的简单使用
1 import numpy as np 2 from sklearn import datasets 3 from sklearn.cross_validation import train_test_split 4 from sklearn.neighbors import KNeighborsClassifier 5 6 #数据载入 7 iris = datasets.load_iris() 8 iris_X = iris.data 9 iris_y = iris.target 10 11 #这里的这个打乱不仅仅是取testsize大小分开,而且还是把顺序打乱了 12 trainX,testX,trainY,testY = train_test_split(iris_X,iris_y,test_size = 0.3) 13 knn = KNeighborsClassifier() 14 15 #训练 16 knn.fit(trainX,trainY) 17 #得到分类结果 18 print(knn.predict(testX)) 19 print(testY) 20 #print (iris_y) 21 #print ((iris_X.shape))
import numpy as npfrom sklearn import datasetsfrom sklearn.cross_validation import train_test_splitfrom sklearn.neighbors import KNeighborsClassifier
iris = datasets.load_iris()iris_X = iris.datairis_y = iris.target
#这里的这个打乱不仅仅是取testsize大小分开,而且还是把顺序打乱了trainX,testX,trainY,testY = train_test_split(iris_X,iris_y,test_size = 0.3)knn = KNeighborsClassifier()knn.fit(trainX,trainY)print(knn.predict(testX))print(testY)#print (iris_y)#print ((iris_X.shape))