使用scrapy爬取手机版斗鱼主播的房间图片及昵称

目的:通过fiddler在电脑上对手机版斗鱼主播进行抓包,爬取所有主播的昵称和图片链接

关于使用fiddler抓取手机包的设置:

把手机和装有fiddler的电脑处在同一个网段(同一个wifi),手机连接好wifi后,点击手机wifi的连接,把代理改为手动,主机地址设置为fiddler所在的电脑ip,端口号为8888(fiddler默认使用的端口号),就可以对手机进行抓包

1 创建爬虫项目douyumeinv

scrapy startproject douyumeinv

2 设置items.py文件,对要爬取数据设置字段名字及类型进行保存

# -*- coding: utf-8 -*-

# Define here the models for your scraped items
#
# See documentation in:
# https://doc.scrapy.org/en/latest/topics/items.html

import scrapy



class DouyumeinvItem(scrapy.Item):
  
    # 主播昵称
    nickname = scrapy.Field()
    # 主播房间的图片链接
    roomSrc = scrapy.Field()
    # 照片在本地保存的位置
    imagesPath = scrapy.Field()


3 在spiders文件夹内创建爬虫文件douyuspider.py,代码如下

# -*- coding: utf-8 -*-
import scrapy
from douyumeinv.items import DouyumeinvItem
import json


class DouyuSpider(scrapy.Spider):

	# 爬虫名字,终端执行命令时使用。如scrapy crawl douyu
    name = 'douyu'
    # 指定爬取的域范围
    allowed_domains = ['douyu.com']
    # 要爬取的页码
    num = 1
    # 主播个数
    n = 0
    # 实际有主播的页码
    pageCount = 0

    url = 'https://m.douyu.com/api/room/mixList?page=' + str(num) + '&type=qmxx'
    # 爬取的url列表
    start_urls = [url]

    def parse(self, response):
    	'''解析函数'''

    	# 把获取的json数据转换为python字典
    	data = json.loads(response.text)['data']
    	# 获取实际具有主播的页码
    	self.pageCount = int(data['pageCount'])
    	for each in data['list']:
			self.n += 1
			item = DouyumeinvItem()
			# 主播房间图片链接
			item['roomSrc'] = each['roomSrc'].encode('utf-8')
			# 主播昵称
			item['nickname'] = each['nickname'].encode('utf-8')
			# print(item)
			# 返回数据给管道
			yield item

	# 重新发送请求	
	self.num += 1
	# 只对有主播的页码,进行发送请求
	if self.num <= self.pageCount:
		self.url = 'https://m.douyu.com/api/room/mixList?page=' + str(self.num) + '&type=qmxx'
		yield scrapy.Request(self.url, callback=self.parse)
	print '\n已爬完第%d页,共%d页,共爬取%d个主播\n'%(self.num - 1,self.pageCount,self.n)



4 设置pipelines.py管道文件,利用images.ImagesPipeline类来请求图片链接并处理下载好的图片

# -*- coding: utf-8 -*-

# Define your item pipelines here
#
# Don't forget to add your pipeline to the ITEM_PIPELINES setting
# See: https://doc.scrapy.org/en/latest/topics/item-pipeline.html


# class DouyumeinvPipeline(object):
    # def process_item(self, item, spider):
    #     return item
import scrapy
from scrapy.pipelines import images
from scrapy.utils.project import get_project_settings
import os

class DouyumeinvPipeline(object):
	def process_item(self, item, spider):
		return item

class ImagesPipeline(images.ImagesPipeline):

	images_store = get_project_settings().get('IMAGES_STORE')
	# count用来统计实际下载并改名成功的图片个数
	count = 0

	def get_media_requests(self, item, info):
		'''
		get_media_requests的作用就是为每一个图片链接生成一个Request对象,这个方法的输出将作为item_completed的输入中的results

		'''

        # return [Request(x) for x in item.get(self.images_urls_field, [])]
		image_url = item['roomSrc']
		# print('='*60)
		# print(image_url)
		# print(item['nickname'])
		# print('='*60)
		
		yield scrapy.Request(image_url)

	def item_completed(self, results, item, info):
      
		# results是一个元组,每个元组包括(success, imageinfoorfailure)。
		# 如果success=true,imageinfoor_failure是一个字典,包括url/path/checksum三个key。

      

		image_path = [x["path"] for ok,x in results if ok]
		# print('*'*60)
		# 由于yield的原因,image_path的值为每次输出一个列表['full/0c1c1f78e7084f5e3b07fd1b0a066c6c49dd30e0.jpg']
		# print(image_path[0])
		# print(item['nickname'])
		# print('*'*60)

		# 此处发现,不用再创建相应的文件夹,直接使用下面的字符串拼接,就可以生成一个文件夹
		old_file = self.images_store + '/' + image_path[0]
		new_file = self.images_store + '/full/' + item['nickname'] + '.jpg'
		# print('\n'  + '-'*60)
		# print(old_file)
		# print(new_file)
		# print('\n')
		# print(os.path.exists(old_file))
		# 判断该文件及路径是否存在
		
		# 如果图片下载成功,则计数加1
		if os.path.exists(old_file):
			self.count += 1
		# print('\n')
		# print('-'*60 + '\n')
		os.rename(old_file,new_file)
		item['imagesPath'] = self.images_store + '/full/' + item['nickname']
		# print(os.listdir('/home/cc/pachong/2-scrapy框架/01.scrapy框架与Spider类/douyumeinv/douyumeinv/images/full/'))
		print('#'*60)
		print('已成功下载%d张图片'%(self.count))
		print('#'*60)
		return item

5 设置settings.py文件

6 测试结果如下:

posted @ 2018-07-16 18:18  silence-cc  阅读(303)  评论(0编辑  收藏  举报