pandas.DataFrame.reindex_like的使用说明
参考链接:https://pandas.pydata.org/docs/reference/api/pandas.DataFrame.reindex_like.html#pandas.DataFrame.reindex_like
pandas.DataFrame.reindex_like¶
DataFrame.
reindex_like
(other, method=None, copy=True, limit=None, tolerance=None)[source]-
Return an object with matching indices as other object.
Conform the object to the same index on all axes. Optional filling logic, placing NaN in locations having no value in the previous index. A new object is produced unless the new index is equivalent to the current one and copy=False.
- Parameters
- otherObject of the same data type
-
Its row and column indices are used to define the new indices of this object.
- method{None, ‘backfill’/’bfill’, ‘pad’/’ffill’, ‘nearest’}
-
Method to use for filling holes in reindexed DataFrame. Please note: this is only applicable to DataFrames/Series with a monotonically increasing/decreasing index.
-
None (default): don’t fill gaps
-
pad / ffill: propagate last valid observation forward to next valid
-
backfill / bfill: use next valid observation to fill gap
-
nearest: use nearest valid observations to fill gap.
-
- copybool, default True
-
Return a new object, even if the passed indexes are the same.
- limitint, default None
-
Maximum number of consecutive labels to fill for inexact matches.
- toleranceoptional
-
Maximum distance between original and new labels for inexact matches. The values of the index at the matching locations must satisfy the equation
abs(index[indexer] - target) <= tolerance
.Tolerance may be a scalar value, which applies the same tolerance to all values, or list-like, which applies variable tolerance per element. List-like includes list, tuple, array, Series, and must be the same size as the index and its dtype must exactly match the index’s type.
- Returns
- Series or DataFrame
-
Same type as caller, but with changed indices on each axis.
Same as calling .reindex(index=other.index, columns=other.columns,...)
.
跟这个效果一样reindex(index=other.index, columns=other.columns,...)
.
这个是今天学习的4个方法中最简单的一个,其实就是去学习另外一个的df对象的index与columns。直接抄书中说明。
In [146]: df1 Out[146]: temp_celsius temp_fahrenheit windspeed 2014-02-12 24.3 75.7 high 2014-02-13 31.0 87.8 high 2014-02-14 22.0 71.6 medium 2014-02-15 35.0 95.0 medium In [147]: df2 Out[147]: temp_celsius windspeed 2014-02-12 28.0 low 2014-02-13 30.0 low 2014-02-15 35.1 medium In [148]: df2.reindex_like(df1) Out[148]: temp_celsius temp_fahrenheit windspeed 2014-02-12 28.0 NaN low 2014-02-13 30.0 NaN low 2014-02-14 NaN NaN NaN 2014-02-15 35.1 NaN medium In [149]:
从代码中,可以清晰的看到df2,完全使用了df1的index与columns信息,并且在缺省的信息下,使用了NaN数据。