【网络流24题】最长k可重区间集问题
这是一道我一开始没想出来的题。
题面
https://www.luogu.org/problemnew/show/P3358
题解
离散化。
图的基础是一条长链,流量为$k$,区间是从$l$指向$r$的边,流量为$1$,费用为长度。
#include<cstdio> #include<iostream> #include<cstring> #include<algorithm> #include<queue> #include<vector> #define ri register int #define N 5000 #define S 0 #define INF 1000000007 using namespace std; int n,k,T; int l[550],r[550],v[550],dc[1450]; int read() { int ret=0,f=0; char ch=getchar(); while (ch>'9' || ch<'0') f|=(ch=='-'),ch=getchar(); while (ch>='0' && ch<='9') ret*=10,ret+=(ch-'0'),ch=getchar(); return f?-ret:ret; } struct graph { vector<int> to,w,c; vector<int> ed[N]; int dis[N]; int cur[N]; bool vis[N]; void add_edge(int a,int b,int aw,int ac) { to.push_back(b); w.push_back(aw); c.push_back(ac); ed[a].push_back(to.size()-1); to.push_back(a); w.push_back(0); c.push_back(-ac); ed[b].push_back(to.size()-1); } bool spfa() { memset(dis,-0x3f,sizeof(dis)); memset(vis,0,sizeof(vis)); queue<int> q; dis[S]=0;q.push(S);vis[S]=1; while (!q.empty()) { int x=q.front(); q.pop(); for (ri i=0;i<ed[x].size();i++) { int e=ed[x][i]; if (dis[to[e]]<dis[x]+c[e] && w[e]) { dis[to[e]]=dis[x]+c[e]; if (!vis[to[e]]) vis[to[e]]=1,q.push(to[e]); } } vis[x]=0; } return dis[T]>-INF; } int dfs(int x,int lim) { if (x==T || !lim) return lim; int sum=0; vis[x]=1; for (ri &i=cur[x];i<ed[x].size();i++) { int e=ed[x][i]; if (dis[x]+c[e]==dis[to[e]] && w[e] && !vis[to[e]]) { int f=dfs(to[e],min(lim,w[e])); w[e]-=f; w[1^e]+=f; lim-=f; sum+=f; if (!lim) return sum; } } return sum; } int zkw() { int ret=0; while (spfa()) { memset(vis,0,sizeof(vis)); memset(cur,0,sizeof(cur)); ret+=dis[T]*dfs(S,INF); } return ret; } } G; int main() { n=read(); k=read(); int cc=0; for (ri i=1;i<=n;i++) { l[i]=read(); r[i]=read(); if (l[i]>r[i]) swap(l[i],r[i]); v[i]=r[i]-l[i]; dc[++cc]=l[i]; dc[++cc]=r[i]; } sort(dc,dc+cc+1); cc=unique(dc,dc+cc+1)-dc; for (ri i=1;i<=n;i++) { l[i]=lower_bound(dc,dc+cc+1,l[i])-dc; r[i]=lower_bound(dc,dc+cc+1,r[i])-dc; } T=cc+1; G.add_edge(S,1,k,0); for (ri i=1;i<cc;i++) G.add_edge(i,i+1,k,0); G.add_edge(cc,T,k,0); for (ri i=1;i<=n;i++) G.add_edge(l[i],r[i],1,v[i]); cout<<G.zkw()<<endl; return 0; }