大数据基础---Hive是什么?
这篇文章主要介绍Hive的概念。
简介:
Hive中文名叫数据仓库管理系统,之前我们操作MapReduce必须通过编写代码或者通过特殊命令来实现,有了Hive我们通过常用的SQL语句就能操作MapReduce集群了。是不是感觉很方便。 这也是方便不懂MapReduce原理,懂SQL语句的人用的。
有好几个公司都推出了自己的Hive,其中比较出名的是Apache Hive,CDH Hive,HDP Hive和MapR Hive,大家刚开始学习大部分都用的Apache Hive,但是公司中却很少使用它,因为它的版本太杂乱,里面的BUG也很多,没法快速投入生产,所以大部分都采用第三方Hive,也就是CDH或MapR Hive,这些Hive由专门组织开发,调理清晰,BUG较少,当然人家也是靠这个服务赚钱啦。博主因为也是学习阶段,所以先介绍Apache Hive了,后续会介绍和搭建其它版本的。
结构:
Setp1: 用户通过Shell命令,WebUI或JDBC调用Driver
Setp2: Driver会先去数据库查询有没有这个表的信息,没有的话直接返回,有的话进行第三步
Setp3:将SQL转行为MapReduce执行命令
Setp4:分发到MapReduce去执行
类型 | |
---|---|
Integers(整型) | TINYINT—1 字节的有符号整数 SMALLINT—2 字节的有符号整数 INT—4 字节的有符号整数 BIGINT—8 字节的有符号整数 |
Boolean(布尔型) | BOOLEAN—TRUE/FALSE |
Floating point numbers(浮点型) | FLOAT— 单精度浮点型 DOUBLE—双精度浮点型 |
Fixed point numbers(定点数) | DECIMAL—用户自定义精度定点数,比如 DECIMAL(7,2) |
String types(字符串) | STRING—指定字符集的字符序列 VARCHAR—具有最大长度限制的字符序列 CHAR—固定长度的字符序列 |
Date and time types(日期时间类型) | TIMESTAMP — 时间戳 TIMESTAMP WITH LOCAL TIME ZONE — 时间戳,纳秒精度 DATE—日期类型 |
Binary types(二进制类型) |
复杂类型:
描述 | 示例 | |
---|---|---|
STRUCT | 类似于对象,是字段的集合,字段的类型可以不同,可以使用 名称.字段名 方式进行访问 |
STRUCT ('xiaoming', 12 , '2018-12-12') |
MAP | 键值对的集合,可以使用 名称[key] 的方式访问对应的值 |
map('a', 1, 'b', 2) |
ARRAY | 数组是一组具有相同类型和名称的变量的集合,可以使用 名称[index] 访问对应的值 |
示例:
如下给出一个基本数据类型和复杂数据类型的使用示例:
CREATE TABLE students( name STRING, -- 姓名 age INT, -- 年龄 subject ARRAY<STRING>, --学科 score MAP<STRING,FLOAT>, --各个学科考试成绩 address STRUCT<houseNumber:int, street:STRING, city:STRING, province:STRING> --家庭居住地址 ) ROW FORMAT DELIMITED FIELDS TERMINATED BY "\t";
内容格式:
当数据存储在文本文件中,必须按照一定格式区别行和列,如使用逗号作为分隔符的 CSV 文件 (Comma-Separated Values) 或者使用制表符作为分隔值的 TSV 文件 (Tab-Separated Values)。但此时也存在一个缺点,就是正常的文件内容中也可能出现逗号或者制表符。
所以 Hive 默认使用了几个平时很少出现的字符,这些字符一般不会作为内容出现在文件中。Hive 默认的行和列分隔符如下表所示。
描述 | |
---|---|
\n | 对于文本文件来说,每行是一条记录,所以可以使用换行符来分割记录 |
^A (Ctrl+A) | 分割字段 (列),在 CREATE TABLE 语句中也可以使用八进制编码 \001 来表示 |
^B | 用于分割 ARRAY 或者 STRUCT 中的元素,或者用于 MAP 中键值对之间的分割, 在 CREATE TABLE 语句中也可以使用八进制编码 \002 表示 |
^C | 用于 MAP 中键和值之间的分割,在 CREATE TABLE 语句中也可以使用八进制编码 \003 |
使用示例如下:
CREATE TABLE page_view(viewTime INT, userid BIGINT) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001' COLLECTION ITEMS TERMINATED BY '\002' MAP KEYS TERMINATED BY '\003' STORED AS SEQUENCEFILE;
存储格式
-支持的存储格式
说明 | |
---|---|
TextFile | 存储为纯文本文件。 这是 Hive 默认的文件存储格式。这种存储方式数据不做压缩,磁盘开销大,数据解析开销大。 |
SequenceFile | SequenceFile 是 Hadoop API 提供的一种二进制文件,它将数据以<key,value>的形式序列化到文件中。这种二进制文件内部使用 Hadoop 的标准的 Writable 接口实现序列化和反序列化。它与 Hadoop API 中的 MapFile 是互相兼容的。Hive 中的 SequenceFile 继承自 Hadoop API 的 SequenceFile,不过它的 key 为空,使用 value 存放实际的值,这样是为了避免 MR 在运行 map 阶段进行额外的排序操作。 |
RCFile | RCFile 文件格式是 FaceBook 开源的一种 Hive 的文件存储格式,首先将表分为几个行组,对每个行组内的数据按列存储,每一列的数据都是分开存储。 |
ORC Files | ORC 是在一定程度上扩展了 RCFile,是对 RCFile 的优化。 |
Avro Files | Avro 是一个数据序列化系统,设计用于支持大批量数据交换的应用。它的主要特点有:支持二进制序列化方式,可以便捷,快速地处理大量数据;动态语言友好,Avro 提供的机制使动态语言可以方便地处理 Avro 数据。 |
Parquet |
-指定存储格式
CREATE TABLE page_view(viewTime INT, userid BIGINT) ROW FORMAT DELIMITED FIELDS TERMINATED BY '\001' COLLECTION ITEMS TERMINATED BY '\002' MAP KEYS TERMINATED BY '\003' STORED AS SEQUENCEFILE;
各个存储文件类型指定方式如下:
-
STORED AS TEXTFILE
-
STORED AS SEQUENCEFILE
-
STORED AS ORC
-
STORED AS PARQUET
-
STORED AS AVRO
-
STORED AS RCFILE
参考资料:
本文来自博客园,作者:数据驱动,转载请注明原文链接:https://www.cnblogs.com/shun7man/p/11820830.html