hdu 5092 Seam Carving

  这道题 我没看出来 他只可以往下走,我看到的 8-connected ;所以今天写一下如果是 8-connected 怎么解;

其实说白了这个就是从上到下走一条线到达最后一行的距离最小; 从Map【a】【b】 到Map【a】【b+1】 的距离是Map【a】【b+1】 以此类推:建图即可;

然后在加一个点0,和n+m+1 点这样在建立一下从  0 点到第一行的边,和最后一行到(n+m+1) 的边 求一个从0 到(n+m+1) 的最短路径就好了,

怎么维护最右侧?:  Dijkstra  有 队列优化!多以我们可以再这个由下级队列里面 吧col 号也设置进去;这样就可以使答案的字典序最大,也就是最右侧:

代码.cpp

  

#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <cstdlib>
#include <iostream>
#include <set>
#include <map>
#include <vector>
#include <queue>
#include <string>
using namespace std;
int n,m;
int mat[105][105];
int dd[][2]={-1,1,  -1,0,  -1,-1,  0,1,  0,-1,  1,1, 1,0, 1,-1 };
int ddd[][2]={1,-1,1,0,1,1};
bool jude(int x,int y)
{
    return x>=1&&x<=n&&y>=1&&y<=m;
}
int ID(int x,int y)
{
    return (x-1)*m+y;
}
const int INF = 1000000000;
const int maxn =10000+10;
struct Edge {
  int from, to, dist,col;
  Edge(){}
  Edge(int from,int to,int dist,int col):from(from),to(to),dist(dist),col(col){}
};
struct HeapNode {
  int d, u , col;
  HeapNode(){}
  HeapNode(int d,int u,int col):d(d),u(u),col(col){}
  bool operator < (const HeapNode& rhs) const {
      if(d==rhs.d) return col<rhs.col;
    return d > rhs.d;
  }
};

struct Dijkstra {
  int n, m;
  vector<Edge> edges;
  vector<int> G[maxn];
  bool done[maxn];
  int d[maxn];
  int p[maxn];
  void init(int n) {
    this->n = n;
    for(int i = 0; i < n; i++) G[i].clear();
    edges.clear();
  }
  void AddEdge(int from, int to, int dist,int col) {
    edges.push_back(Edge(from, to, dist,col));
    m = edges.size();
    G[from].push_back(m-1);
  }
  void dijkstra(int s) {
    priority_queue<HeapNode> Q;
    for(int i = 0; i < n; i++) d[i] = INF;
    d[s] = 0;
    memset(done, 0, sizeof(done));
    Q.push( HeapNode(0, s , 0)) ;
    while(!Q.empty()) {
      HeapNode x = Q.top(); Q.pop();
      int u = x.u;
      if(done[u]) continue;
      done[u] = true;
      for(int i = 0; i < G[u].size(); i++) {
        Edge& e = edges[G[u][i]];
        if(d[e.to] > d[u] + e.dist) {
          d[e.to] = d[u] + e.dist;
          p[e.to] = G[u][i];
          Q.push(HeapNode(d[e.to], e.to, e.col));
        }
      }
    }
  }
  void GetShortestPaths(int s, int & dist, vector<int>&paths) {
    dijkstra(s);
    for(int i = n-1; i <n; i++) {
      dist = d[i];
      paths.clear();
      int t = i;
      paths.push_back(t);
      while(t != s) {
        paths.push_back(edges[p[t]].col);
        t = edges[p[t]].from;
      }
      reverse(paths.begin(), paths.end());
    }
  }
};
Dijkstra solver;
vector <int> path;
int main()
{
    int t,ca=1;
    scanf("%d",&t);
    while(t--)
    {

        scanf("%d%d",&n,&m);
        solver.init(n*m+2);
        for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)scanf("%d",&mat[i][j]);
        for(int i=1;i<=n;i++)for(int j=1;j<=m;j++)
        {
            for(int k=0;k<3;k++)
            {
                int x=i+ddd[k][0];
                int y=j+ddd[k][1];
                if(!jude(x,y)) continue;
                solver.AddEdge(ID(i,j),ID(x,y),mat[x][y],y);
            }    
// 上边有个dd 数组 (用dd数组 8-connected 然后K 变成上届8 就可以了 )
        }
        for(int i=1;i<=m;i++)  solver.AddEdge(0,ID(1,i),mat[1][i],i);
        for(int i=1;i<=m;i++)  solver.AddEdge(ID(n,i),n*m+1,0,105);
        int dis=0;
        solver.GetShortestPaths(0,dis,path);
        printf("Case %d\n",ca++);
        for(int i=0;i<path.size()-2;i++)
        {
            if(i==0) printf("%d",path[i]);
            else     printf(" %d",path[i]);
        }
        puts("");
    }
    return 0;
}

  

posted @ 2014-11-03 12:19  默默无语敲代码  阅读(267)  评论(0编辑  收藏  举报