九校联考-DL24凉心模拟Day2T2 整除(division)

2.1 题目描述

整除符号为 |,d|n 在计算机语言中可被描述为 n%d == 0。
现有一算式 n| \(x^m\) − x,给定 n,m,求 [1, n] 以内 x 解的个数。
解可能很大,输出取模 998244353。

2.2 格式

2.2.1 输入格式

其中 n 的给定方式是由 c 个不超过 t 的质数的乘积给出的,c 和 t 的范围会在数据范围中给出。
第一行一个 id 表示这个数据点的标号。
多组数据,其中第二行一个整数 T 表示数据组数。
对于每一组数据:
第一行两个整数 c 和 m。
第二行 c 个整数,这些整数都是质数,且两两不同,他们的乘积即为n。
由于你可以通过输入求出 t,输入不再给出。

2.2.2 输出格式

对于每组数据输出一行,表示解的个数。

2.3 样例

2.3.1 样例输入

0
1
2 3
2 3

2.3.2 样例输出

6

CRT板子题
然而并没看出来
对于每个质数算出其解个数,将这几个得到的数相乘得到答案

代码

#include <bits/stdc++.h>
#define enter putchar('\n')
#define space putchar(' ')
using namespace std;
template<class T>
void read(T &res) {
    res = 0;char c = getchar();T f = 1;
    while(c < '0' || c > '9') {
        if(c == '-') f = -1;
        c = getchar();
    }
    while(c >= '0' && c <= '9') {
        res = res * 10 + c - '0';
        c = getchar();
    }
    res *= f;
}
template<class T>
void out(T x) {
    if(x < 0) {putchar('-');x = -x;}
    if(x >= 10) {
        out(x / 10);
    }
    putchar('0' + x % 10);
}
int id;
int a[20005],tot,prime[20005];
bool nonprime[20005];
int mul(int a,int b,int MOD) {
    return 1LL * a * b % MOD;
}
int fpow(int x,int c,int MOD) {
    int res = 1,t = x;
    while(c) {
        if(c & 1) res = res * t % MOD;
        t = t * t % MOD;
        c >>= 1;
    }
    return res;
}
int Calc(int p,int m) {
    memset(nonprime,0,sizeof(nonprime));tot = 0;
    a[1] = 1;a[p] = 0;
    for(int i = 2 ; i < p ; ++i) {
        if(!nonprime[i]) {
            a[i] = fpow(i,m,p);
            prime[++tot] = i;
        }
        for(int j = 1 ; j <= tot ; ++j) {
            if(i * prime[j] > 10000) break;
            a[i * prime[j]] = a[i] * a[prime[j]] % p;
            nonprime[i * prime[j]] = 1;
            if(i % prime[j] == 0) break;
        }
    }
    int res = 0;
    for(int i = 1 ; i <= p ; ++i) {
        int t = a[i] - i + p;
        if(t >= p) t -= p;
        res += (t == 0);
    }
    return res;
}
void Solve() {
    int ans = 1;
    int c,m;
    read(c);read(m);
    int p = 0;
    for(int i = 1 ; i <= c ; ++i) {
        read(p);
        ans = mul(ans,Calc(p,m),998244353);
    }
    out(ans);enter;
}
int main() {
    freopen("division.in","r",stdin);
    freopen("division.out","w",stdout);
    read(id);
    int T;
    read(T);
    while(T--) Solve();
}
posted @ 2018-09-11 18:01  smallshulker  阅读(412)  评论(0编辑  收藏  举报