HDU 4135 Co-prime(容斥原理)

题目链接

题目大意

  求区间内与n互质的数的数量。

解题思路

  对于区间显然用[b,1]-[1,a-1]的结果就行了。反过来想,从原来的数中删去与n不互质的数。将n分解质因数,然后利用容斥原理去掉与n有公因数的数即可。
  假设分解质因数的结果是2,3,5,观察发现结果就是去掉能被2,3,5整除的数,加上能被2和3,2和5,3和5整除的数,加上能被2和3和5整除的数,当去掉的数是一个奇数项时是减号,偶数项时时加号。同时,每新加入一个质因子,就是在前面的结果上都乘上这个质因子(假设第一个数是1)。

代码

const int maxn = 1e5+10;
const int maxm = 2e2+10;
int p[maxn], u[maxn], q[maxn] = {-1}, __q, k;
vector<int> tmp;
ll solve(ll k, ll x) {
    for (int i = 1; (ll)p[i]*p[i]<=x; ++i)
        if (x%p[i]==0) {
            while(x%p[i]==0) x/=p[i];
            tmp.push_back(p[i]);
        }
    if (x>1) tmp.push_back(x);
    ll res = k; __q = 1;
    for (auto num : tmp) {
        int t = __q;
        for (int i = 0; i<t; ++i) q[__q++] = -q[i]*num;
    }
    for (int i = 1; i<__q; ++i) res -= k/q[i];
    tmp.clear();
    return res;
}
int main() {
    for (int i = 2; i<maxn; ++i) {
        if (!u[i]) u[i] = p[++p[0]] = i;
        for (int j = 1; i*p[j]<maxn; ++j) {
            u[i*p[j]] = p[j];
            if (i%p[j]==0) break;
        }
    }
    int t; scanf("%d", &t);
    while(t--) {
		ll a, b, c; scanf("%lld%lld%lld", &a, &b, &c);
        printf("Case #%d: %lld\n", ++k, solve(b, c)-solve(a-1, c));
    }
    return 0;
}
posted @ 2020-08-27 18:59  shuitiangong  阅读(100)  评论(0编辑  收藏  举报