自标注目标检测数据集(labelme)转voc\coco格式,并切图处理

http://www.icodebang.com/article/355859.html

highlight: github
theme: github

这篇博客记录了我处理自标注的目标检测数据集的过程,由于数据集中小目标占比较大,处理的目标是希望将数据集中图片切割成小块。过程相对比较繁琐,因此在此记录,以便有同样需求的同学参考,也方便自己回顾。有任何问题或者有更好的方法,也希望在评论区指出,共同进步。

labelme转voc

这个过程网上有很多的代码可供参考,我使用下面代码作为转换。labelme标注的结果应该是一个文件夹里面既有图片,也有同名的txt文件提供标签信息。

Voc格式的数据遵循以下目录

  VOC_ROOT #根目录\
               ├── JPEGImages # 存放源图片\
               │              ├── aaaa.jpg\
               │              ├── bbbb.jpg\
               │              └── cccc.jpg\
               ├── Annotations # 存放[xml]文件,与JPEGImages中的图片一一对应,解释图片的内容\
               │              ├── aaaa.xml\
               │              ├── bbbb.xml\
               │              └── cccc.xml\
               └── ImageSets\
                           └── Main\
                               ├── train.txt # txt文件中每一行包含一个图片的名称\
                               └── val.txt

下面是转换的代码labelme2voc.py

  import os
  from typing import List, Any
  import numpy as np
  import codecs
  import json
  from glob import glob
  import cv2
  import shutil
  from sklearn.model_selection import train_test_split
  # 1.标签路径
  labelme_imgpath = r"" # 原始labelme数据图片路径
  labelme_annorpath = r"" #labelme数据标签路径(txt)
  saved_path = r"" # 保存路径
  isUseTest = True # 是否创建test集
  # 2.创建要求文件夹
  if not os.path.exists(saved_path + "Annotations"):
  os.makedirs(saved_path + "Annotations")
  if not os.path.exists(saved_path + "JPEGImages/"):
  os.makedirs(saved_path + "JPEGImages/")
  if not os.path.exists(saved_path + "ImageSets/Main/"):
  os.makedirs(saved_path + "ImageSets/Main/")
  # 3.获取待处理文件
  files = glob(labelme_annorpath+ "*.json")
  files = [i.replace("\", "/").split("/")[-1].split(".json")[0] for i in files]
  #print(files)
  # 4.读取标注信息并写入xml
  for json_file_ in files:
  json_filename = labelme_annorpath + json_file_ + ".json"
  json_file = json.load(open(json_filename, "r", encoding="utf-8"))
  height, width, channels = cv2.imread(labelme_imgpath + json_file_ + ".jpg").shape
  with codecs.open(saved_path + "Annotations/" + json_file_ + ".xml", "w", "utf-8") as xml:
  xml.write('<annotation>\n')
  xml.write('\t<folder>' + 'WH_data' + '</folder>\n')
  xml.write('\t<filename>' + json_file_ + ".jpg" + '</filename>\n')
  xml.write('\t<source>\n')
  xml.write('\t\t<database>WH Data</database>\n')
  xml.write('\t\t<annotation>WH</annotation>\n')
  xml.write('\t\t<image>flickr</image>\n')
  xml.write('\t\t<flickrid>NULL</flickrid>\n')
  xml.write('\t</source>\n')
  xml.write('\t<owner>\n')
  xml.write('\t\t<flickrid>NULL</flickrid>\n')
  xml.write('\t\t<name>WH</name>\n')
  xml.write('\t</owner>\n')
  xml.write('\t<size>\n')
  xml.write('\t\t<width>' + str(width) + '</width>\n')
  xml.write('\t\t<height>' + str(height) + '</height>\n')
  xml.write('\t\t<depth>' + str(channels) + '</depth>\n')
  xml.write('\t</size>\n')
  xml.write('\t\t<segmented>0</segmented>\n')
  for multi in json_file["shapes"]:
  points = np.array(multi["points"])
  labelName = multi["label"]
  xmin = min(points[:, 0])
  xmax = max(points[:, 0])
  ymin = min(points[:, 1])
  ymax = max(points[:, 1])
  label = multi["label"]
  if xmax <= xmin:
  pass
  elif ymax <= ymin:
  pass
  else:
  xml.write('\t<object>\n')
  xml.write('\t\t<name>' + labelName + '</name>\n')
  xml.write('\t\t<pose>Unspecified</pose>\n')
  xml.write('\t\t<truncated>1</truncated>\n')
  xml.write('\t\t<difficult>0</difficult>\n')
  xml.write('\t\t<bndbox>\n')
  xml.write('\t\t\t<xmin>' + str(int(xmin)) + '</xmin>\n')
  xml.write('\t\t\t<ymin>' + str(int(ymin)) + '</ymin>\n')
  xml.write('\t\t\t<xmax>' + str(int(xmax)) + '</xmax>\n')
  xml.write('\t\t\t<ymax>' + str(int(ymax)) + '</ymax>\n')
  xml.write('\t\t</bndbox>\n')
  xml.write('\t</object>\n')
  print(json_filename, xmin, ymin, xmax, ymax, label)
  xml.write('</annotation>')
  # 5.复制图片到 VOC2007/JPEGImages/下
  image_files = glob(labelme_imgpath + "*.jpg")
  print("copy image files to VOC007/JPEGImages/")
  for image in image_files:
  shutil.copy(image, saved_path + "JPEGImages/")
  # 6.split files for txt
  txtsavepath = saved_path + "ImageSets/Main/"
  ftrainval = open(txtsavepath + '/trainval.txt', 'w')
  ftest = open(txtsavepath + '/test.txt', 'w')
  ftrain = open(txtsavepath + '/train.txt', 'w')
  fval = open(txtsavepath + '/val.txt', 'w')
  total_files = glob("D:/DATASET_for_CNN/labelme_data_new/VOC2007/Annotations/*.xml")
  total_files = [i.replace("\", "/").split("/")[-1].split(".xml")[0] for i in total_files]
  trainval_files = []
  test_files = []
  if isUseTest:
  trainval_files, test_files = train_test_split(total_files, test_size=0.15, random_state=55)
  else:
  trainval_files = total_files
  for file in trainval_files:
  ftrainval.write(file + "\n")
  # split
  train_files, val_files = train_test_split(trainval_files, test_size=0.15, random_state=55)
  # train
  for file in train_files:
  ftrain.write(file + "\n")
  # val
  for file in val_files:
  fval.write(file + "\n")
  for file in test_files:
  print(file)
  ftest.write(file + "\n")
  ftrainval.close()
  ftrain.close()
  fval.close()
  ftest.close()

voc格式数据集去除不需要的label

我的数据集原本标注的label类共10类,但我在实际使用中只需要使用其中的4类来训练,因此需要把剩下不需要的类别的图片和标注统统删除掉。因为数据集已经转换成了voc格式,在删除的时候只需要遍历xml文件夹,解析xml文件,当里面出现了不需要的类别的obj的时候,就把这个xml连同对应的图片一并删除

我这么做是因为在我的数据集中,不需要的6类本身占比就非常少,因此对于那些混杂着需要目标和不需要目标的图片,我也一并删掉了,并不会对数据集本身的图片数量造成严重影响。

下面是我处理的代码voc_purification.py,值得注意的是,因为我的voc格式数据中ImageSets\Main\文件夹下有trainval.txt、train.txt、val.txt、test.txt四个文件,也就是四个划分,分别是训练验证集、训练集、验证集、测试集,所以在代码中我连续四次检查txt文件中是否有需要删除的行。

  import glob
  import xml.etree.ElementTree as ET
  import os
  # import xml.dom.minidom
  # 类名 把要删除的类名称放进去
  delete_labels = ['a', 'b', 'c', 'd', 'e', 'f']
  # xml路径
  path = r'your/annotation/path' #存放xml文件的文件夹
  img_path = r'your/image/path' #存放图片的文件夹
  for xml_file in glob.glob(path + '/*.xml'):
  # 获取文件名(不带后缀)
  filename = os.path.basename(xml_file)[:-4]
  # 返回解析树
  tree = ET.parse(xml_file)
  # 获取根节点
  root = tree.getroot()
  # 对所有目标进行解析
  for member in root.findall('object'):
  # 获取object标签内的name
  objectname = member.find('name').text
  if objectname in delete_labels:
  # print(objectname)
  os.remove(os.path.join(img_path, filename + '.jpg'))
  print('remove img:' + filename + '.jpg' + '\n')
  with open(r"your/trainval.txt/path", 'r') as file:
  lines = file.readlines()
  with open(r"your/trainval.txt/path", 'w') as file:
  for line in lines:
  if line.strip("\n") != filename:
  file.write(line)
  with open(r"your/train.txt/path", 'r') as file:
  lines = file.readlines()
  with open(r"your/train.txt/path", 'w') as file:
  for line in lines:
  if line.strip("\n") != filename:
  file.write(line)
  with open(r"your/val.txt/path", 'r') as file:
  lines = file.readlines()
  with open(r"your/val.txt/path", 'w') as file:
  for line in lines:
  if line.strip("\n") != filename:
  file.write(line)
  with open(r"your/test.txt/path", 'r') as file:
  lines = file.readlines()
  with open(r"your/test.txt/path", 'w') as file:
  for line in lines:
  if line.strip("\n") != filename:
  file.write(line)
  print('remove txt file:' + filename + '.jpg' + '\n')
  os.remove(os.path.join(path, filename + '.xml'))
  print('remove xml:' + filename + '.jpg' + '\n')
  break

voc转coco格式

之前之所以先转成voc格式,就是因为voc格式中一张图片对应一个xml文件的方式对于删掉不需要的图片比较方便,但在实际使用中,还是coco格式用的比较多,因此我再把他转成coco格式。

这部分内容网上有很多教程可以参考,我贴出来一个以供参考。

voc2coco_from_txt

  import shutil
  import xml.etree.ElementTree as ET
  import os
  import json
  coco = dict()
  coco['images'] = []
  coco['type'] = 'instances'
  coco['annotations'] = []
  coco['categories'] = []
  category_set = dict()
  image_set = set()
  # 注意具体应用中,类别索引是从0开始,还是从1开始。
  # 若从1开始(包含背景的情况)下一句代码需改成category_item_id = 0
  category_item_id = -1
  image_id = 20180000000
  annotation_id = 0
  def addCatItem(name):
  global category_item_id
  category_item = dict()
  category_item['supercategory'] = 'none'
  category_item_id += 1
  category_item['id'] = category_item_id
  category_item['name'] = name
  coco['categories'].append(category_item)
  category_set[name] = category_item_id
  return category_item_id
  def addImgItem(file_name, size):
  global image_id
  if file_name is None:
  raise Exception('Could not find filename tag in xml file.')
  if size['width'] is None:
  raise Exception('Could not find width tag in xml file.')
  if size['height'] is None:
  raise Exception('Could not find height tag in xml file.')
  image_id += 1
  image_item = dict()
  image_item['id'] = image_id
  image_item['file_name'] = file_name
  image_item['width'] = size['width']
  image_item['height'] = size['height']
  coco['images'].append(image_item)
  image_set.add(file_name)
  return image_id
  def addAnnoItem(object_name, image_id, category_id, bbox):
  global annotation_id
  annotation_item = dict()
  annotation_item['segmentation'] = []
  seg = []
  # bbox[] is x,y,w,h
  # left_top
  seg.append(bbox[0])
  seg.append(bbox[1])
  # left_bottom
  seg.append(bbox[0])
  seg.append(bbox[1] + bbox[3])
  # right_bottom
  seg.append(bbox[0] + bbox[2])
  seg.append(bbox[1] + bbox[3])
  # right_top
  seg.append(bbox[0] + bbox[2])
  seg.append(bbox[1])
  annotation_item['segmentation'].append(seg)
  annotation_item['area'] = bbox[2] * bbox[3]
  annotation_item['iscrowd'] = 0
  annotation_item['ignore'] = 0
  annotation_item['image_id'] = image_id
  annotation_item['bbox'] = bbox
  annotation_item['category_id'] = category_id
  annotation_id += 1
  annotation_item['id'] = annotation_id
  coco['annotations'].append(annotation_item)
  def _read_image_ids(image_sets_file):
  ids = []
  with open(image_sets_file) as f:
  for line in f:
  ids.append(line.rstrip())
  return ids
  """通过txt文件生成"""
  # split ='train' 'val' 'trainval' 'test'
  def parseXmlFiles_by_txt(data_dir, json_save_path, split='train'):
  print("hello")
  labelfile = split + ".txt"
  image_sets_file = data_dir + "/ImageSets/Main/" + labelfile
  ids = _read_image_ids(image_sets_file)
  for _id in ids:
  image_file = data_dir + f"/JPEGImages/{_id}.jpg"
  shutil.copy(image_file, fr"E:\DataSets\labelme_new\COCO_cls_4\val{_id}.jpg")
  xml_file = data_dir + f"/Annotations/{_id}.xml"
  bndbox = dict()
  size = dict()
  current_image_id = None
  current_category_id = None
  file_name = None
  size['width'] = None
  size['height'] = None
  size['depth'] = None
  tree = ET.parse(xml_file)
  root = tree.getroot()
  if root.tag != 'annotation':
  raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))
  # elem is <folder>, <filename>, <size>, <object>
  for elem in root:
  current_parent = elem.tag
  current_sub = None
  object_name = None
  if elem.tag == 'folder':
  continue
  if elem.tag == 'filename':
  # 若xml文件名和文件里'filename'标签的内容不一致,而xml文件名是正确的,
  # 即,(标注错误),则用xml文件名赋给file_name,即,下面一句代码换成file_name = _id + '.jpg'
  file_name = elem.text
  if file_name in category_set:
  raise Exception('file_name duplicated')
  # add img item only after parse <size> tag
  elif current_image_id is None and file_name is not None and size['width'] is not None:
  if file_name not in image_set:
  current_image_id = addImgItem(file_name, size)
  print('add image with {} and {}'.format(file_name, size))
  else:
  raise Exception('duplicated image: {}'.format(file_name))
  # subelem is <width>, <height>, <depth>, <name>, <bndbox>
  for subelem in elem:
  bndbox['xmin'] = None
  bndbox['xmax'] = None
  bndbox['ymin'] = None
  bndbox['ymax'] = None
  current_sub = subelem.tag
  if current_parent == 'object' and subelem.tag == 'name':
  object_name = subelem.text
  if object_name not in category_set:
  current_category_id = addCatItem(object_name)
  else:
  current_category_id = category_set[object_name]
  elif current_parent == 'size':
  if size[subelem.tag] is not None:
  raise Exception('xml structure broken at size tag.')
  size[subelem.tag] = int(subelem.text)
  # option is <xmin>, <ymin>, <xmax>, <ymax>, when subelem is <bndbox>
  for option in subelem:
  if current_sub == 'bndbox':
  if bndbox[option.tag] is not None:
  raise Exception('xml structure corrupted at bndbox tag.')
  bndbox[option.tag] = int(option.text)
  # only after parse the <object> tag
  if bndbox['xmin'] is not None:
  if object_name is None:
  raise Exception('xml structure broken at bndbox tag')
  if current_image_id is None:
  raise Exception('xml structure broken at bndbox tag')
  if current_category_id is None:
  raise Exception('xml structure broken at bndbox tag')
  bbox = []
  # x
  bbox.append(bndbox['xmin'])
  # y
  bbox.append(bndbox['ymin'])
  # w
  bbox.append(bndbox['xmax'] - bndbox['xmin'])
  # h
  bbox.append(bndbox['ymax'] - bndbox['ymin'])
  print('add annotation with {},{},{},{}'.format(object_name, current_image_id, current_category_id,
  bbox))
  addAnnoItem(object_name, current_image_id, current_category_id, bbox)
  json.dump(coco, open(json_save_path, 'w'))
  """直接从xml文件夹中生成"""
  def parseXmlFiles(xml_path, json_save_path):
  for f in os.listdir(xml_path):
  if not f.endswith('.xml'):
  continue
  bndbox = dict()
  size = dict()
  current_image_id = None
  current_category_id = None
  file_name = None
  size['width'] = None
  size['height'] = None
  size['depth'] = None
  xml_file = os.path.join(xml_path, f)
  print(xml_file)
  tree = ET.parse(xml_file)
  root = tree.getroot()
  if root.tag != 'annotation':
  raise Exception('pascal voc xml root element should be annotation, rather than {}'.format(root.tag))
  # elem is <folder>, <filename>, <size>, <object>
  for elem in root:
  current_parent = elem.tag
  current_sub = None
  object_name = None
  if elem.tag == 'folder':
  continue
  if elem.tag == 'filename':
  file_name = elem.text
  if file_name in category_set:
  raise Exception('file_name duplicated')
  # add img item only after parse <size> tag
  elif current_image_id is None and file_name is not None and size['width'] is not None:
  if file_name not in image_set:
  current_image_id = addImgItem(file_name, size)
  print('add image with {} and {}'.format(file_name, size))
  else:
  raise Exception('duplicated image: {}'.format(file_name))
  # subelem is <width>, <height>, <depth>, <name>, <bndbox>
  for subelem in elem:
  bndbox['xmin'] = None
  bndbox['xmax'] = None
  bndbox['ymin'] = None
  bndbox['ymax'] = None
  current_sub = subelem.tag
  if current_parent == 'object' and subelem.tag == 'name':
  object_name = subelem.text
  if object_name not in category_set:
  current_category_id = addCatItem(object_name)
  else:
  current_category_id = category_set[object_name]
  elif current_parent == 'size':
  if size[subelem.tag] is not None:
  raise Exception('xml structure broken at size tag.')
  size[subelem.tag] = int(subelem.text)
  # option is <xmin>, <ymin>, <xmax>, <ymax>, when subelem is <bndbox>
  for option in subelem:
  if current_sub == 'bndbox':
  if bndbox[option.tag] is not None:
  raise Exception('xml structure corrupted at bndbox tag.')
  bndbox[option.tag] = int(option.text)
  # only after parse the <object> tag
  if bndbox['xmin'] is not None:
  if object_name is None:
  raise Exception('xml structure broken at bndbox tag')
  if current_image_id is None:
  raise Exception('xml structure broken at bndbox tag')
  if current_category_id is None:
  raise Exception('xml structure broken at bndbox tag')
  bbox = []
  # x
  bbox.append(bndbox['xmin'])
  # y
  bbox.append(bndbox['ymin'])
  # w
  bbox.append(bndbox['xmax'] - bndbox['xmin'])
  # h
  bbox.append(bndbox['ymax'] - bndbox['ymin'])
  print('add annotation with {},{},{},{}'.format(object_name, current_image_id, current_category_id,
  bbox))
  addAnnoItem(object_name, current_image_id, current_category_id, bbox)
  json.dump(coco, open(json_save_path, 'w'))
  if __name__ == '__main__':
  # 通过txt文件生成
  voc_data_dir = r"E:\DataSets\labelme_new\VOC2007" # 整个数据集文件夹所在路径
  json_save_path = r"E:\DataSets\labelme_new\COCO_cls_4\annotations\val.json" # 生成后的文件存放路径和生成文件的名字
  parseXmlFiles_by_txt(voc_data_dir, json_save_path, "test")
  # 通过文件夹生成
  # ann_path = "E:/VOCdevkit/VOC2007/Annotations"
  # json_save_path = "E:/VOCdevkit/test.json"
  # parseXmlFiles(ann_path, json_save_path)

COCO格式数据集切图

由于我的数据集图片中目标都比较小,采用切图训练的方式进行(一般当原始数据集全部有标注框的图片中,有1/2以上的图片标注框的平均宽高与原图宽高比例小于0.04时,建议进行切图训练),本节代码来自PaddleDetection官方GitHub仓库。

统计自己的数据集信息

先统计自己的数据集信息,看看是否需要切图训练

可以用下面代码box_distribution.py,使用过程在命令行输入

  python box_distribution.py --json_path ../../dataset/annotations/train.json --out_img box_distribution.jpg

其中--json_path加载coco格式的json文件路径,--out_img输出统计分布图路径

  # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  #
  # Licensed under the Apache License, Version 2.0 (the "License");
  # you may not use this file except in compliance with the License.
  # You may obtain a copy of the License at
  #
  # http://www.apache.org/licenses/LICENSE-2.0
  #
  # Unless required by applicable law or agreed to in writing, software
  # distributed under the License is distributed on an "AS IS" BASIS,
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  # See the License for the specific language governing permissions and
  # limitations under the License.
  import matplotlib.pyplot as plt
  import json
  import numpy as np
  import argparse
  def median(data):
  data.sort()
  mid = len(data) // 2
  median = (data[mid] + data[~mid]) / 2
  return median
  def draw_distribution(width, height, out_path):
  w_bins = int((max(width) - min(width)) // 10)
  h_bins = int((max(height) - min(height)) // 10)
  plt.figure()
  plt.subplot(221)
  plt.hist(width, bins=w_bins, color='green')
  plt.xlabel('Width rate *1000')
  plt.ylabel('number')
  plt.title('Distribution of Width')
  plt.subplot(222)
  plt.hist(height, bins=h_bins, color='blue')
  plt.xlabel('Height rate *1000')
  plt.title('Distribution of Height')
  plt.savefig(out_path)
  print(f'Distribution saved as {out_path}')
  plt.show()
  def get_ratio_infos(jsonfile, out_img):
  allannjson = json.load(open(jsonfile, 'r'))
  be_im_id = 1
  be_im_w = []
  be_im_h = []
  ratio_w = []
  ratio_h = []
  images = allannjson['images']
  for i, ann in enumerate(allannjson['annotations']):
  if ann['iscrowd']:
  continue
  x0, y0, w, h = ann['bbox'][:]
  if be_im_id == ann['image_id']:
  be_im_w.append(w)
  be_im_h.append(h)
  else:
  im_w = images[be_im_id - 1]['width']
  im_h = images[be_im_id - 1]['height']
  im_m_w = np.mean(be_im_w)
  im_m_h = np.mean(be_im_h)
  dis_w = im_m_w / im_w
  dis_h = im_m_h / im_h
  ratio_w.append(dis_w)
  ratio_h.append(dis_h)
  be_im_id = ann['image_id']
  be_im_w = [w]
  be_im_h = [h]
  im_w = images[be_im_id - 1]['width']
  im_h = images[be_im_id - 1]['height']
  im_m_w = np.mean(be_im_w)
  im_m_h = np.mean(be_im_h)
  dis_w = im_m_w / im_w
  dis_h = im_m_h / im_h
  ratio_w.append(dis_w)
  ratio_h.append(dis_h)
  mid_w = median(ratio_w)
  mid_h = median(ratio_h)
  ratio_w = [i * 1000 for i in ratio_w]
  ratio_h = [i * 1000 for i in ratio_h]
  print(f'Median of ratio_w is {mid_w}')
  print(f'Median of ratio_h is {mid_h}')
  print('all_img with box: ', len(ratio_h))
  print('all_ann: ', len(allannjson['annotations']))
  draw_distribution(ratio_w, ratio_h, out_img)
  def main():
  parser = argparse.ArgumentParser()
  parser.add_argument(
  '--json_path', type=str, default=None, help="Dataset json path.")
  parser.add_argument(
  '--out_img',
  type=str,
  default='box_distribution.jpg',
  help="Name of distibution img.")
  args = parser.parse_args()
  get_ratio_infos(args.json_path, args.out_img)
  if __name__ == "__main__":
  main()

切图

如果统计结果中,有1/2以上的图片标注框的平均宽高与原图宽高比例小于0.04,如下输出信息,则考虑使用切图方式训练,能够比较有效地提高小目标的检测精度。

  Median of ratio_w is 0.03799439775910364
  Median of ratio_h is 0.04074914637387802
  all_img with box: 1409
  all_ann: 98905
  Distribution saved as box_distribution.jpg

切图的代码同样来自PaddleDetection官方Github仓库

slice_image.py

  # Copyright (c) 2022 PaddlePaddle Authors. All Rights Reserved.
  #
  # Licensed under the Apache License, Version 2.0 (the "License");
  # you may not use this file except in compliance with the License.
  # You may obtain a copy of the License at
  #
  # http://www.apache.org/licenses/LICENSE-2.0
  #
  # Unless required by applicable law or agreed to in writing, software
  # distributed under the License is distributed on an "AS IS" BASIS,
  # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
  # See the License for the specific language governing permissions and
  # limitations under the License.
  import argparse
  from tqdm import tqdm
  def slice_data(image_dir, dataset_json_path, output_dir, slice_size,
  overlap_ratio):
  try:
  from sahi.scripts.slice_coco import slice
  except Exception as e:
  raise RuntimeError(
  'Unable to use sahi to slice images, please install sahi, for example: `pip install sahi`, see https://github.com/obss/sahi'
  )
  tqdm.write(
  f" slicing for slice_size={slice_size}, overlap_ratio={overlap_ratio}")
  slice(
  image_dir=image_dir,
  dataset_json_path=dataset_json_path,
  output_dir=output_dir,
  slice_size=slice_size,
  overlap_ratio=overlap_ratio, )
  def main():
  parser = argparse.ArgumentParser()
  parser.add_argument(
  '--image_dir', type=str, default=None, help="The image folder path.")
  parser.add_argument(
  '--json_path', type=str, default=None, help="Dataset json path.")
  parser.add_argument(
  '--output_dir', type=str, default=None, help="Output dir.")
  parser.add_argument(
  '--slice_size', type=int, default=500, help="slice_size")
  parser.add_argument(
  '--overlap_ratio', type=float, default=0.25, help="overlap_ratio")
  args = parser.parse_args()
  slice_data(args.image_dir, args.json_path, args.output_dir, args.slice_size,
  args.overlap_ratio)
  if __name__ == "__main__":
  main()

删除无目标的背景图

切图之后的数据集,文件夹里面存在大量的无目标标注框的图片,即原图中的背景部分。如果直接丢进去训练有可能造成正负样本不均衡的问题,从而影响精度。因此要把这部分图片删除掉。因为数据集是coco格式的,所以删的时候既要删掉图片,也要把json文件中对应的信息删除掉,具体实现参考下面代码。

coco_del_bg.py

  import json
  import os
  class CocoDataDeleteBackground:
  def __init__(self, imgPath, jsonPath):
  self.imgPath = imgPath
  self.jsonPath = jsonPath
  def delete_background(self):
  with open(self.jsonPath, 'r+') as f:
  annotation_json = json.load(f)
  # 查询所有那些有标注框的图片id
  all_img_id = []
  for anno in annotation_json['annotations']:
  img_id = anno['image_id'] # 获取当前目标所在的图片id
  all_img_id.append(img_id)
  all_img_id = list(set(all_img_id)) # id去重
  all_imgs_to_del = []
  # 遍历images对应的list,删掉其中id不在all_img_id中的项,以及对应的图片
  for i in range(len(annotation_json['images'][::])):
  image_name = annotation_json['images'][i]['file_name'] # 读取图片名
  img_id = annotation_json['images'][i]['id'] # 读取图片id
  if img_id not in all_img_id:
  all_imgs_to_del.append(i)
  os.remove(os.path.join(self.imgPath, image_name))
  print(image_name + 'has been removed!')
  all_imgs_to_del = sorted(all_imgs_to_del, reverse=True)
  for i in all_imgs_to_del:
  del annotation_json['images'][i]
  f.seek(0)
  f.truncate() # json清空
  f.write(json.dumps(annotation_json)) # json重写
  if __name__ == '__main__':
  # the first param is the directory's path of images
  # the second param is the path of json file
  d = CocoDataDeleteBackground(r"your\image\path",
  r"your\json\path")
  # run the delete function
  d.delete_background()
  print('done!')
作者:花伴
posted @ 2023-09-22 10:23  水木清扬  阅读(1154)  评论(0编辑  收藏  举报