[CVPR论文介绍] BASNet:边缘感知的显著性物体检测
https://zhuanlan.zhihu.com/p/71538356
和昨天的那篇U²Net同作者,但是更早一点。
大多数深度学习方法→在显著性预测时侧重于区域预测→但现在他们创建了一个新的损失函数→也考虑了目标的边界。
显著性预测→我们人类擅长于此→关注给定的图像或视频中的“重要”目标。(但没有很多方法考虑目标的边界)。现在有很多深度学习模型结合了不同的表示方式。
就像U-net方法一样,→内部特征也可以直接使用。
看起来他们的想法是对的 —— 他们的方法确实比其他SOTA方法更好。(大部分方法使用FCN→全卷积网络→有些实际上使用RNN网络进行迭代预测)。
解决这个问题有许多方法,但不知道哪一种是最好的。
这是一个非常有趣的选择。(第一个网络比第二个网络大得多→池化层没有真正使用)。
拼接→内部特性映射→更好的预测。
他们还手工创建了一个细化模块 —— 这类创新并不容易实现。此外,还调整了损失函数,成功地训练了整个网络。
边界损失项被添加到二元交叉熵中 —— SSIM也包括在内——这是相当大的。我还不知道这个度量是可微的。IoU 损失也被使用了→许多不同的损失被合并起来→这是我看到越来越多的趋势之一。
这些损失的组合 → 导致更平滑的预测。
损失越多越好?看来他们的情况就是这样:
README.md
BASNet
Code for CVPR 2019 paper 'BASNet: Boundary-Aware Salient Object Detection code', Xuebin Qin, Zichen Zhang, Chenyang Huang, Chao Gao, Masood Dehghan and Martin Jagersand.
Contact: xuebin[at]ualberta[dot]ca
(2020-May-09) NEWS! Our new Salient Object Detection model (U^2-Net), which is just accepted by Pattern Recognition, is available now!
U^2-Net: Going Deeper with Nested U-Structure for Salient Object Detection
Evaluation
Required libraries
Python 3.6
numpy 1.15.2
scikit-image 0.14.0
PIL 5.2.0
PyTorch 0.4.0
torchvision 0.2.1
glob
The SSIM loss is adapted from pytorch-ssim.
Usage
- Clone this repo
git clone https://github.com/NathanUA/BASNet.git
-
Download the pre-trained model basnet.pth from GoogleDrive or baidu extraction code: 6phq, and put it into the dirctory 'saved_models/basnet_bsi/'
-
Cd to the directory 'BASNet', run the training or inference process by command:
python basnet_train.py
orpython basnet_test.py
respectively.
We also provide the predicted saliency maps (GoogleDrive,Baidu) for datasets SOD, ECSSD, DUT-OMRON, PASCAL-S, HKU-IS and DUTS-TE.
Architecture
Quantitative Comparison
Qualitative Comparison
Citation
@InProceedings{Qin_2019_CVPR,
author = {Qin, Xuebin and Zhang, Zichen and Huang, Chenyang and Gao, Chao and Dehghan, Masood and Jagersand, Martin},
title = {BASNet: Boundary-Aware Salient Object Detection},
booktitle = {The IEEE Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2019}
}
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧