result [[-4.5023837]]
#在pycharm运行程序
import tensorflow as tf
import numpy as np
BATCH_SIZE = 8 # 一次输入网络的数据,称为batch。一次不能喂太多数据
SEED = 23455 # 产生统一的随机数
rdm = np.random.RandomState(SEED)
X = rdm.rand(32, 2)
i=0
Y=np.zeros((32,), dtype=np.int)
Y_=np.transpose([Y])
for (x0, x1) in X:
y=int(x0 + x1 < 1)
Y_[[i]]=y
i=i+1
print("X:\n", X)
print("Y_:\n",Y_)
# 1定义神经网络的输入、参数和输出,定义前向传播过程。
x = tf.placeholder(tf.float32, shape=(None, 2))
y_ = tf.placeholder(tf.float32, shape=(None, 1))
w1 = tf.Variable(tf.random_normal([2, 3], stddev=1, seed=1))
w2 = tf.Variable(tf.random_normal([3, 1], stddev=1, seed=1))
a = tf.matmul(x, w1)
y = tf.matmul(a, w2)
# 2定义损失函数及反向传播方法。
loss = tf.reduce_mean(tf.square(y - y_))
train_step = tf.train.GradientDescentOptimizer(0.001).minimize(loss) # 三种优化方法选择一个就可以
with tf.Session() as sess:
init = tf.global_variables_initializer()
sess.run(init)
# 输出目前(未经训练)的参数取值。
print("w1:\n", sess.run(w1))
print("w2:\n", sess.run(w2))
print("\n")
STEPS = 3000
for i in range(STEPS): #0-2999
start = (i * BATCH_SIZE) % 32
end = start + BATCH_SIZE
sess.run(train_step, feed_dict={x: X[start:end], y_: Y_[start:end]})
if i % 500 == 0:
total_loss = sess.run(loss, feed_dict={x: X, y_: Y_})
print("After %d training step(s), loss on all data is %g"%(i,total_loss))
print("\n")
print("w1:\n", sess.run(w1))
print("w2:\n", sess.run(w2))
#比较完整的一个网络
import tensorflow as tf
import numpy as np
batch_size=8
seed=23455
#制造一些假数据
rng=np.random.RandomState(seed)
X=rng.rand(32,2)
print(X)
Y=np.zeros(shape=(32,1),dtype=np.int)
Y=[[np.int(x0+x1<1)]for (x0,x1) in X]
print(Y)
#定义网络
x_input=tf.placeholder(shape=[None,2],dtype=np.float,name="input")
y_output=tf.placeholder(shape=[None,1],dtype=np.float,name="output")
#定义变量
W1=tf.Variable(tf.random_normal(shape=[2,3],stddev=1,seed=1))
W2=tf.Variable(tf.random_normal(shape=[3,1],stddev=1,seed=1))
#定义静态网络函数
a=tf.matmul(x_input,W1)
y=tf.matmul(a,W2)
#定义损失函数
loss=tf.reduce_mean(tf.square(y-y_output))
train_step=tf.train.GradientDescentOptimizer(0.001).minimize(loss)
#初始化变量
init=tf.global_variables_initializer()
with tf.Session() as sess:
sess.run(init)
print("W1:\n",W1)
#开始批量载入数据
for i in range(2000):
data_start=(i*batch_size)%32
data_end=data_start+batch_size
#开始训练数据
sess.run(train_step,feed_dict={x_input:X[data_start:data_end],y_output:Y[data_start:data_end]})
#每隔一段就打印出损失值
if ((i)%500==0):
Loss=sess.run(loss,feed_dict={x_input:X,y_output:Y})
print("loss",Loss)
print("w1",sess.run(W1))
print("W2",sess.run(W2))
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧