tensorflow--conv函数
#第一种yolo3中程序
def convolutional(input_data, filters_shape, trainable, name, downsample=False, activate=True, bn=True):
#卷积层名称
with tf.variable_scope(name):
#如果需要下采样
if downsample:
pad_h, pad_w = (filters_shape[0] - 2) // 2 + 1, (filters_shape[1] - 2) // 2 + 1
paddings = tf.constant([[0, 0], [pad_h, pad_h], [pad_w, pad_w], [0, 0]])
input_data = tf.pad(input_data, paddings, 'CONSTANT')
strides = (1, 2, 2, 1)
padding = 'VALID'
else:
strides = (1, 1, 1, 1)
padding = "SAME"
#定义一个变量
weight = tf.get_variable(name='weight', dtype=tf.float32, trainable=True,
shape=filters_shape, initializer=tf.random_normal_initializer(stddev=0.01))
conv = tf.nn.conv2d(input=input_data, filter=weight, strides=strides, padding=padding)
#如果归一化
if bn:
conv = tf.layers.batch_normalization(conv, beta_initializer=tf.zeros_initializer(),
gamma_initializer=tf.ones_initializer(),
moving_mean_initializer=tf.zeros_initializer(),
moving_variance_initializer=tf.ones_initializer(), training=trainable)
#如果不归一化
else:
bias = tf.get_variable(name='bias', shape=filters_shape[-1], trainable=True,
dtype=tf.float32, initializer=tf.constant_initializer(0.0))
conv = tf.nn.bias_add(conv, bias)
if activate == True: conv = tf.nn.leaky_relu(conv, alpha=0.1)
return conv
input_data = common.convolutional(input_data, filters_shape=(3, 3, 3, 32), trainable=trainable, name='conv0')
#第二种yolo1
def _conv_layer(self, x, num_filters, filter_size, stride,scope):
in_channels = x.get_shape().as_list()[-1]
weight = tf.Variable(tf.truncated_normal([filter_size, filter_size,
in_channels, num_filters], stddev=0.1),name='weights')
bias = tf.Variable(tf.zeros([num_filters,]),name='biases')
pad_size = filter_size // 2
pad_mat = np.array([[0, 0], [pad_size, pad_size], [pad_size, pad_size], [0, 0]])
x_pad = tf.pad(x, pad_mat)
conv = tf.nn.conv2d(x_pad, weight, strides=[1, stride, stride, 1], padding="VALID",name=scope)
output = self.leak_relu(tf.nn.bias_add(conv, bias))
return output
net = self._conv_layer(net, 512, 1, 1,'conv_22')
分类:
tensorflow
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· 开发者必知的日志记录最佳实践
· SQL Server 2025 AI相关能力初探
· Linux系列:如何用 C#调用 C方法造成内存泄露
· AI与.NET技术实操系列(二):开始使用ML.NET
· 记一次.NET内存居高不下排查解决与启示
· 阿里最新开源QwQ-32B,效果媲美deepseek-r1满血版,部署成本又又又降低了!
· 开源Multi-agent AI智能体框架aevatar.ai,欢迎大家贡献代码
· Manus重磅发布:全球首款通用AI代理技术深度解析与实战指南
· 被坑几百块钱后,我竟然真的恢复了删除的微信聊天记录!
· 没有Manus邀请码?试试免邀请码的MGX或者开源的OpenManus吧