这是从http://duodaa.com/blog/index.php/archives/538/截得图,以下是代码
package math; import java.math.BigDecimal; import java.util.function.BiConsumer; public class TestEuler { public static void main(String[] args) { boolean flg=true; for(long x=1;flg;x++){ for(long y=1;flg&&(y<x);y++){ for(long z=1;flg&&(z<y);z++){ for(long w=1;true;w++){ int r=power4Long(w).compareTo(sum(power4Long(x),power4Long(y),power4Long(z))); System.out.print(x+":"+power4Long(x).toString()+","); System.out.print(y+":"+power4Long(y).toString()+","); System.out.print(z+":"+power4Long(z).toString()+","); System.out.println(w+":"+power4Long(w).toString()+";"); if(r==1){ break; } if(r==0){ flg=false; break; } } } } } } public static boolean checkEuler(long x,long y,long z,long w){ return power4Long(w).compareTo(sum(power4Long(x),power4Long(y),power4Long(z)))==0; } public static BigDecimal power4Long(Long b){ return power4(new BigDecimal(b)); } public static BigDecimal power4(BigDecimal b){ return b.multiply(b).multiply(b).multiply(b); } public static BigDecimal sum(BigDecimal... bs){ BigDecimal reB=new BigDecimal(0); for(BigDecimal b:bs){ reB=reB.add(b); } return reB; } }
事实上这样的四层循环极大的消耗着计算机的性能计算很慢,要考我的这些代码来验证欧拉猜想估计得跑到我死都没结果
所以一下代码直接验证下结果
package math; public class TestEuler2 { public static void main(String[] args) { long x=2682440L; long y=15365639L; long z=18796760L; long w=20615673L; System.err.println(x+"的四次方是"+TestEuler.power4Long(x).toString()); System.err.println(y+"的四次方是"+TestEuler.power4Long(y).toString()); System.err.println(z+"的四次方是"+TestEuler.power4Long(z).toString()); System.err.println(w+"的四次方是"+TestEuler.power4Long(w).toString()); System.out.println(TestEuler.checkEuler(x, y, z, w)); } }
此代码结果如下
2682440的四次方是51774995082902409832960000 15365639的四次方是55744561387133523724209779041 18796760的四次方是124833740909952854954805760000 20615673的四次方是180630077292169281088848499041 true
有人证明这个方程式有无穷的解,真是让人惊叹数学的深邃伟大。
以下测试运行用时
package math; import java.math.BigDecimal; import java.util.function.BiConsumer; import org.jgroups.tests.perf.Data; /** * @author zxl * @jdk 1.8 * @Date 2016年10月13日上午10:04:24 */ public class TestEuler { public static void main(String[] args) { long currTime=System.currentTimeMillis(); boolean flg=true; for(long x=1;flg&&(x<10L);x++){ for(long y=1;flg&&(y<x);y++){ for(long z=1;flg&&(z<y);z++){ for(long w=1;true;w++){ int r=power4Long(w).compareTo(sum(power4Long(x),power4Long(y),power4Long(z))); System.out.print(x+":"+power4Long(x).toString()+","); System.out.print(y+":"+power4Long(y).toString()+","); System.out.print(z+":"+power4Long(z).toString()+","); System.out.println(w+":"+power4Long(w).toString()+";"); if(r==1){ break; } if(r==0){ flg=false; break; } } } } } System.out.println("用时共计:"+(System.currentTimeMillis()-currTime)); } public static boolean checkEuler(long x,long y,long z,long w){ return power4Long(w).compareTo(sum(power4Long(x),power4Long(y),power4Long(z)))==0; } public static BigDecimal power4Long(Long b){ return power4(new BigDecimal(b)); } public static BigDecimal power4(BigDecimal b){ return b.multiply(b).multiply(b).multiply(b); } public static BigDecimal sum(BigDecimal... bs){ BigDecimal reB=new BigDecimal(0); for(BigDecimal b:bs){ reB=reB.add(b); } return reB; } }
该代码计算到10用时163毫秒,因为w在小于x的时候等式恒不成立
for(long w=x;true;w++)
所以w从x开始循环有效的降低了运行时间大概达到原先的四分之一耗时。