numpy中np.linalg.norm()求向量、矩阵的范数

np.linalg.norm()    # linalg = linear(线性) + algebra(代数),   norm表示范数

 

x_norm = np.linalg.norm(x, ord=None, axis=None, keepdims=False)

 

①x: 表示矩阵(也可以是一维)

②ord:范数类型

向量的范数:

 

矩阵的范数:

ord=1:列和的最大值

ord=2:|λE-ATA|=0,求特征值,然后求最大特征值得算术平方根

ord=∞:行和的最大值

 

ord=None:默认情况下,是求整体的矩阵元素平方和,再开根号。(注意.None不是求2范数)

 

③axis:处理类型

axis=1表示按行向量处理,求多个行向量的范数

axis=0表示按列向量处理,求多个列向量的范数

axis=None表示矩阵范数。

 

④keepdims:是否保持矩阵的二维特性,避免出现shape = (5, )这样的形状

True表示保持矩阵的二维特性,False相反

 

posted @   帅帅的飞猪  阅读(10321)  评论(0编辑  收藏  举报
编辑推荐:
· .NET Core 中如何实现缓存的预热?
· 从 HTTP 原因短语缺失研究 HTTP/2 和 HTTP/3 的设计差异
· AI与.NET技术实操系列:向量存储与相似性搜索在 .NET 中的实现
· 基于Microsoft.Extensions.AI核心库实现RAG应用
· Linux系列:如何用heaptrack跟踪.NET程序的非托管内存泄露
阅读排行:
· TypeScript + Deepseek 打造卜卦网站:技术与玄学的结合
· Manus的开源复刻OpenManus初探
· AI 智能体引爆开源社区「GitHub 热点速览」
· 三行代码完成国际化适配,妙~啊~
· .NET Core 中如何实现缓存的预热?
点击右上角即可分享
微信分享提示