POJ 2763 (LCA +RMQ+树状数组 || 树链部分) 查询两点距离+修改边权

 

题意: 知道了一颗有  n 个节点的树和树上每条边的权值,对应两种操作:

          0 x        输出 当前节点到 x节点的最短距离,并移动到 x 节点位置

          1 x val   把第 x 条边的权值改为 val

 

题意: 知道了一颗有  n 个节点的树和树上每条边的权值,对应两种操作:

          0 x        输出 当前节点到 x节点的最短距离,并移动到 x 节点位置

          1 x val   把第 x 条边的权值改为 val

LCA +RMQ+树状数组

#include <cstdio>
#include <cmath>
#include <cstring>
#include <algorithm>

using namespace std;

const int maxn = 2e5+100;

int N,Q,S;
//vector <int> G[maxn];

struct edge{
    int to,next,w;
}e[2*maxn];

int head[2*maxn],tot;
void add_edge(int u,int v,int w)
{
    e[tot].to = v;
    e[tot].w = w;
    e[tot].next = head[u];
    head[u] = tot++;

    e[tot].to = u;
    e[tot].w = w;
    e[tot].next = head[v];
    head[v] = tot++;
}

int in[maxn],out[maxn],P[2*maxn],fa[maxn][30],dep[maxn],dis[maxn],cnt;
void dfs(int u,int _fa,int _dep,int _dis)
{
    in[u] = ++cnt;
    P[cnt] = u;
    fa[u][0] = _fa;
    dis[u] = _dis;
    dep[u] = _dep;
    for(int i=head[u];~i;i=e[i].next)
    {
        int v = e[i].to;
        if(v == _fa) continue;
        dfs(v,u,_dep+1,_dis+e[i].w);
    }
    out[u] = ++cnt;
}
void debug()
{
    printf("in:\t");for(int i=1;i<=N;i++) printf("%d ",in[i]);puts("");
    printf("out:\t");for(int i=1;i<=N;i++) printf("%d ",out[i]);puts("");
    printf("p:\t");for(int i=1;i<=cnt;i++) printf("%d ",P[i]);puts("");
    printf("dis:\t");for(int i=1;i<=N;i++) printf("%d ",dis[i]);puts("");
    printf("dep:\t");for(int i=1;i<=N;i++) printf("%d ",dep[i]);puts("");
    printf("edge:");for(int i=0;i<tot;i++) printf("\tto:%d w:%d\n",e[i].to,e[i].w);
}

int initLCA()
{
    int m = (int)log(N)/log(2)+1;
    for(int k=0;k<m;k++)
    {
        for(int v=1;v<=N;v++)
        {
            if(fa[v][k] < 0) {fa[v][k+1] = -1;continue;}
            else fa[v][k+1] = fa[fa[v][k]][k];
        }
    }
}

int LCA(int u,int v)
{
    int m = (int)log(N)/log(2)+1;
    if(dep[v] > dep[u]) swap(u,v);
    for(int k=0;k<m;k++)
    {
        if((dep[u]-dep[v])>>k & 1 )
            u = fa[u][k];
    }
    if(u == v) return u;
    for(int k=m-1;k>=0;k--)
    {
        if(fa[u][k] != fa[v][k])
        {
            u = fa[u][k];
            v = fa[v][k];
        }
    }
    return fa[u][0];
}

int c[2*maxn];
int lowbit(int x) {return x&-x;}

void init()
{
    memset(head,-1,sizeof head);
    memset(fa,-1,sizeof fa);
    memset(c,0,sizeof c);
    memset(in,0,sizeof in);
    memset(out,0,sizeof out);
    tot = 0;
    cnt = 0;
}

void add(int x,int d)
{
    while(x)
    {
        c[x] += d;
        x -= lowbit(x);
    }
}
void add_seg(int l,int r,int d)
{
    add(r,d);
    add(l-1,-d);
}
int sum(int x)
{
    int res = 0;
    //printf("u:%d ",P[x]);
    while(x <= cnt)
    {
        res += c[x];
        x += lowbit(x);
    }
    //printf("res:%d\n",res);
    return res;
}
int dist(int x)
{
    if(x == -1) return 0;
    return sum(in[x]) + dis[x];
}
int main()
{
    //freopen("input.txt","r",stdin);
    while(~scanf("%d%d%d",&N,&Q,&S))
    {
        init();
        for(int i=0,u,v,w;i<N-1;i++)
        {
            scanf("%d%d%d",&u,&v,&w);
            add_edge(u,v,w);
        }
        dfs(1,-1,1,0);
        //debug();
        initLCA();
        for(int i=0;i<tot;i+=2)
        {
            if(dep[e[i].to] < dep[e[i+1].to]) swap(e[i].to,e[i+1].to);
        }
        int op;
        for(int i=0,a,b,c;i<Q;i++)
        {
            scanf("%d",&op);
            if(op == 0)
            {
                scanf("%d",&a);
                int lca = LCA(S,a);
                //printf("lca:%d\n",lca);

                printf("%d\n",dist(S)+dist(a)-2*(dist(lca)));
                S = a;
            }else
            {
                scanf("%d%d",&a,&b);
                a--;
                int u = e[a*2].to;
                int dw = b - (dist(u) - dist(fa[u][0]));
                //printf("dw:%d u:%d\n",dw,u);
                add_seg(in[u],out[u],dw);
            }
        }
    }
}
View Code

 

树链部分

#include<cstdio>
#include<algorithm>
#include<cstring>
#define lson l, m, rt << 1
#define rson m + 1, r, rt << 1 | 1
using namespace std;
typedef long long ll;
const int MAXN = 2e5 + 10;
int n, q, s;
int fa[MAXN]; // fa[v]: v 的父亲
int dep[MAXN]; // dep[v]: v 的深度(根深度为1)
int siz[MAXN]; // : 以 v 为根的子树的节点数
int son[MAXN]; // : 重儿子,siz[u] 为 v 的子节点中 siz 值最大的,那么 u 就是 v 的重儿子
int top[MAXN]; // : 表示 v 所在的重链的顶端节点
int w[MAXN]; // : 表示 v 与其父亲节点的连边在线段树中的位置
int num; // 将树映射到线段树上的标号
int cnt, head[MAXN];
struct Edge {
    int to, next;
}edge[MAXN];
struct E {
    int u, v, c;
}e[MAXN];
void addedge(int u, int v) {
    edge[cnt].to = v;
    edge[cnt].next = head[u];
    head[u] = cnt++;
}
void dfs(int u) {
    siz[u] = 1; son[u] = 0;
    for(int i = head[u]; ~i; i = edge[i].next) {
        if(edge[i].to != fa[u]) {
            fa[edge[i].to] = u;
            dep[edge[i].to] = dep[u] + 1;
            dfs(edge[i].to);
            if(siz[edge[i].to] > siz[son[u]]) son[u] = edge[i].to;
            siz[u] += siz[edge[i].to];
        }
    }
}
void build_tree(int u, int tp) {
    w[u] = ++num; top[u] = tp;
    if(son[u]) build_tree(son[u], top[u]); // 使重链各边在线段树中呈连续分布
    for(int i = head[u]; ~i; i = edge[i].next) {
        int v = edge[i].to;
        if(v != son[u] && v != fa[u])
            build_tree(v, v);
    }
}
ll sum[MAXN];
void pushUp(int rt) {
    sum[rt] = sum[rt << 1] + sum[rt << 1 | 1];
}
void build(int l, int r, int rt) {
    sum[rt] = 0;
    if(l == r) return;
    int m = (l + r) / 2;
    build(lson); build(rson);
}
void update(int p, int c, int l, int r, int rt) {
    if(l == r) {
        sum[rt] = c;
        return;
    }
    int m = (l + r) / 2;
    if(m >= p) update(p, c, lson);
    else update(p, c, rson);
    pushUp(rt);
}
ll query(int L, int R, int l, int r, int rt) {
    if(L <= l && R >= r) return sum[rt];
    int m = (l + r) / 2;
    ll res = 0;
    if(m >= L) res += query(L, R, lson);
    if(m < R) res += query(L, R, rson);
    return res;
}
void change(int v, int c) {
    if(dep[e[v].u] > dep[e[v].v]) update(w[e[v].u], c, 1, n, 1);
    else update(w[e[v].v], c, 1, n, 1);
}
ll seek(int v, int u) {
    int t1 = top[v], t2 = top[u];
    ll res = 0;
    while(t1 != t2) {
        if(dep[t1] < dep[t2]) {
            swap(t1, t2); swap(v, u);
        }
        res += query(w[t1], w[v], 1, n, 1);
        v = fa[t1]; t1 = top[v];
    }
    if(v == u) return res;
    if(dep[v] > dep[u]) swap(v, u);
    return res + query(w[son[v]], w[u], 1, n, 1);
}
int main() {
    memset(head, -1, sizeof head);
    cnt = num = 0;
    scanf("%d%d%d", &n, &q, &s);
    for(int i = 1;  i < n; i++) {
        scanf("%d%d%d", &e[i].u, &e[i].v, &e[i].c);
        addedge(e[i].u, e[i].v);
        addedge(e[i].v, e[i].u);
    }
    dfs(1);
    build_tree(1, 1);
    build(1, n, 1);
    for(int i = 1; i < n; i++) {
        if(dep[e[i].u] > dep[e[i].v]) update(w[e[i].u], e[i].c, 1, n, 1);
        else update(w[e[i].v], e[i].c, 1, n, 1);
    }
    while(q--) {
        int cc;
        int x, y;
        scanf("%d", &cc);
        if(cc) {
            scanf("%d%d", &x, &y);
            change(x, y);
        } else {
            scanf("%d", &x);
            printf("%lld\n", seek(s, x));
            s = x;
        }
    }
    return 0;
}
View Code

 

posted @ 2019-02-26 20:17  shuai_hui  阅读(306)  评论(0编辑  收藏  举报