Stackvlnplot in Seurat package

StackedVlnPlot

Demo data

The scRNA-seq demo data (*rds) files are available in the data folder of this repository.

With Seurat

Stacked violin plot functionality is added to Seurat in version 3.2.1.

library(Seurat)
library(ggplot2)

# Load Seurat obj
pbmc <- readRDS("data/pbmc_2k_v3_Seurat.rds")

features <- c("CD79A", "MS4A1", "CD8A", "CD8B", "LYZ", "LGALS3", "S100A8", "GNLY",
              "NKG7", "KLRB1", "FCGR3A", "FCER1A", "CST3")

a <- VlnPlot(pbmc, features, stack = TRUE, sort = TRUE) +
        theme(legend.position = "none") + ggtitle("identities on y-axis")
        
b <- VlnPlot(pbmc, features, stack = TRUE, sort = TRUE, flip = TRUE) +
        theme(legend.position = "none") + ggtitle("identities on x-axis")

# Use patchwork to join plots
a + b

Using Seurat's VlnPlot function

With ggplot2

Given a data.frame and a vector of identity classes (cluster ID), a stacked violin plot can be created with the ggplot2 package.

Prepare data.frame

library(ggplot2)
library(cowplot)
library(patchwork)

# Load data.frame obj
pbmc <- readRDS("data/pbmc_2k_v3_df.rds")
identity <- readRDS("data/pbmc_2k_v3_Seurat_Idents.rds")

features <- c("CD79A", "MS4A1", "CD8A", "CD8B", "LYZ", "LGALS3", "S100A8", "GNLY",
              "NKG7", "KLRB1", "FCGR3A", "FCER1A", "CST3")

# Subset data.frame
pbmc <- pbmc[,features]

# Add cell ID and identity classes
pbmc$Cell <- rownames(pbmc)
pbmc$Idents <- identity

# Use melt to change data.frame format
pbmc <- reshape2::melt(pbmc, id.vars = c("Cell","Idents"), measure.vars = features,
                       variable.name = "Feat", value.name = "Expr")

The converted long format pbmc:

                 Cell Idents  Feat     Expr
1  AACAACCTCACCTCTG-1      0 CD79A 0.000000
2  AGGAGGTTCGCGGACT-1      0 CD79A 1.743733
3  AGGCATTCAAGACGGT-1      1 CD79A 0.000000
4  GCAACCGCAGTTTCGA-1      1 CD79A 0.000000
5  TTTCACATCGTCCTCA-1      1 CD79A 0.000000
6  CTGCCTAAGCGTTCAT-1      1 CD79A 0.000000
7  CCTCCTCAGCGTCAGA-1      5 CD79A 3.104723
8  AACCATGAGAGCCTGA-1      0 CD79A 0.000000
9  ATGAGTCTCACATTGG-1      2 CD79A 0.000000
10 AGTCATGCACTAACCA-1      4 CD79A 2.756005

Create plots

There are different ways to show the stacked violin plot:

PlotX-axisY-axisFacet
a Identities Expression Feature
b Expression Identities Feature
c Feature Expression Identities
d Expression Feature Identities
# Identities on x-axis
a <- ggplot(pbmc, aes(factor(Idents), Expr, fill = Feat)) +
        geom_violin(scale = "width", adjust = 1, trim = TRUE) +
        scale_y_continuous(expand = c(0, 0), position="right", labels = function(x)
                           c(rep(x = "", times = length(x)-2), x[length(x) - 1], "")) +
        facet_grid(rows = vars(Feat), scales = "free", switch = "y") +
        theme_cowplot(font_size = 12) +
        theme(legend.position = "none", panel.spacing = unit(0, "lines"),
              panel.background = element_rect(fill = NA, color = "black"),
              strip.background = element_blank(),
              strip.text = element_text(face = "bold"),
              strip.text.y.left = element_text(angle = 0)) +
        ggtitle("identities on x-axis") + xlab("Identity") + ylab("Expression Level")

# Identities on y-axis
b <- ggplot(pbmc, aes(Expr, factor(Idents), fill = Feat)) +
        geom_violin(scale = "width", adjust = 1, trim = TRUE) +
        scale_x_continuous(expand = c(0, 0), labels = function(x)
                           c(rep(x = "", times = length(x)-2), x[length(x) - 1], "")) +
        facet_grid(cols = vars(Feat), scales = "free")  +
        theme_cowplot(font_size = 12) +
        theme(legend.position = "none", panel.spacing = unit(0, "lines"),
              panel.background = element_rect(fill = NA, color = "black"),
              strip.background = element_blank(),
              strip.text = element_text(face = "bold"),
              strip.text.x.top = element_text(angle = 90, hjust = 0, vjust = 0.5)) +
        ggtitle("identities on y-axis") + xlab("Expression Level") + ylab("Identity")

# Use patchwork to join plots
a + b

Using ggplot2 (Plot a and b)

# Feature on x-axis
c <- ggplot(pbmc, aes(factor(Feat), Expr, fill = Feat)) +
        geom_violin(scale = "width", adjust = 1, trim = TRUE) +
        scale_y_continuous(expand = c(0, 0), position="right", labels = function(x)
                           c(rep(x = "", times = length(x)-2), x[length(x) - 1], "")) +
        facet_grid(rows = vars(Idents), scales = "free", switch = "y") +
        theme_cowplot(font_size = 12) +
        theme(legend.position = "none", panel.spacing = unit(0, "lines"),
              panel.background = element_rect(fill = NA, color = "black"),
              strip.background = element_blank(),
              strip.text = element_text(face = "bold"),
              strip.text.y.left = element_text(angle = 0),
              axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
        ggtitle("Feature on x-axis") + xlab("Feature") + ylab("Expression Level")

# Feature on y-axis
d <- ggplot(pbmc, aes(Expr, factor(Feat), fill = Feat)) +
        geom_violin(scale = "width", adjust = 1, trim = TRUE) +
        scale_x_continuous(expand = c(0, 0), labels = function(x)
                           c(rep(x = "", times = length(x)-2), x[length(x) - 1], "")) +
        facet_grid(cols = vars(Idents), scales = "free") +
        theme_cowplot(font_size = 12) +
        theme(legend.position = "none", panel.spacing = unit(0, "lines"),
              panel.background = element_rect(fill = NA, color = "black"),
              strip.background = element_blank(),
              strip.text = element_text(face = "bold")) +
        ggtitle("Feature on y-axis") + xlab("Expression Level") + ylab("Feature")

# Use patchwork to join plots
c + d

Using ggplot2  (Plot c and d)

Sort identity classes and features

Note: Some of the codes below are taken and modified from the Seurat package.

Below demonstrates how to recreate the reordering of the identity classes and features seen in Seurat's stacked violin plots.

# Calculate average expression per Idents, output as wide format
avg <- sapply(X = split(x = pbmc, f = pbmc$Idents),
              FUN = function(df) { return(tapply(X = df$Expr, INDEX = df$Feat, FUN = mean)) })

# L2Norm (Euclidean norm) function
L2Norm <- function(mat, MARGIN){
        normalized <- sweep(x = mat, MARGIN = MARGIN,
                            STATS = apply(X = mat, MARGIN = MARGIN,
                                          FUN = function(x){ sqrt(x = sum(x ^ 2)) }), FUN = "/")
        normalized[!is.finite(x = normalized)] <- 0
        return(normalized)
}

# Performs hierarchical clustering
idents.order <- hclust(d = dist(t(L2Norm(mat = avg, MARGIN = 2))))$order
avg <- avg[,idents.order]
avg <- L2Norm(mat = avg, MARGIN = 1)
mat <- hclust(d = dist(avg))$merge

# Order feature clusters by position of their "rank-1 idents"
position <- apply(X = avg, MARGIN = 1, FUN = which.max)
orderings <- list()
for (i in 1:nrow(mat)) {
        x <- if (mat[i,1] < 0) -mat[i,1] else orderings[[mat[i,1]]]
        y <- if (mat[i,2] < 0) -mat[i,2] else orderings[[mat[i,2]]]
        x.pos <- min(x = position[x])
        y.pos <- min(x = position[y])
        orderings[[i]] <- if (x.pos < y.pos) { c(x, y) } else { c(y, x) }
}
features.order <- orderings[[length(orderings)]]

# Update Feature and Identity factor orders
pbmc$Idents <- factor(pbmc$Idents, levels = levels(pbmc$Idents)[idents.order])
pbmc$Feat <- factor(pbmc$Feat, levels = levels(pbmc$Feat)[features.order])

# Plot stacked violin plot with reordered identity classes and features
e <- ggplot(pbmc, aes(factor(Feat), Expr, fill = Feat)) +
        geom_violin(scale = "width", adjust = 1, trim = TRUE) +
        scale_y_continuous(expand = c(0, 0), position="right", labels = function(x)
                           c(rep(x = "", times = length(x)-2), x[length(x) - 1], "")) +
        facet_grid(rows = vars(Idents), scales = "free", switch = "y") +
        theme_cowplot(font_size = 12) +
        theme(legend.position = "none", panel.spacing = unit(0, "lines"),
              panel.background = element_rect(fill = NA, color = "black"),
              strip.background = element_blank(),
              strip.text = element_text(face = "bold"),
              strip.text.y.left = element_text(angle = 0),
              axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
        ggtitle("Feature on x-axis") + xlab("Feature") + ylab("Expression Level")

e

Hierarchical clustering of identity classes and features

Add gene grouping annotation

Below demonstrates how to add gene grouping annotation to sorted stacked violin plots.

# Create grouping info
df <- data.frame(x = levels(pbmc$Feat), group = c("A","A","B","B","B","B","B","C","C","C","D","D","D"), 
                 stringsAsFactors = FALSE)
df$x <- factor(df$x, levels = levels(pbmc$Feat))
df$group <- factor(df$group)
df
xgroup
MS4A1 A
CD79A A
LGALS3 B
LYZ B
CST3 B
S100A8 B
FCER1A B
KLRB1 C
CD8B C
CD8A C
NKG7 D
GNLY D
FCGR3A D
color <- c("cyan", "pink", "green", "darkorange")

# Same as plot e, but hide x-axis labels, change plot.margin to reduce spacing between plots
f <- ggplot(pbmc, aes(Feat, Expr, fill = Feat)) +
        geom_violin(scale = "width", adjust = 1, trim = TRUE) +
        scale_y_continuous(expand = c(0, 0), position="right", labels = function(x)
                           c(rep(x = "", times = length(x)-2), x[length(x) - 1], "")) +
        facet_grid(rows = vars(Idents), scales = "free", switch = "y") +
        theme_cowplot(font_size = 12) +
        theme(legend.position = "none", panel.spacing = unit(0, "lines"),
              panel.background = element_rect(fill = NA, color = "black"),
              plot.margin = unit(c(0,0,0,0), "cm"),
              strip.background = element_blank(),
              strip.text = element_text(face = "bold"),
              strip.text.y.left = element_text(angle = 0),
              axis.title.x = element_blank(),
              axis.ticks.x = element_blank()
              axis.text.x = element_blank()) +
        ggtitle("Feature on x-axis") + ylab("Expression Level")

# Use geom_tile() to add grouping colorings and geom_text() to add grouping labels
g <- ggplot(df, aes(x = x, y = 1, fill = group, label = group)) + geom_tile() +
        geom_text(fontface = "bold", size = 3) + theme_bw(base_size = 12) +
        scale_fill_manual(values = color) + scale_y_continuous(expand = c(0, 0)) +
        theme(legend.position = "none", panel.spacing = unit(0, "lines"),
              panel.background = element_blank(), 
              panel.border = element_blank(),
              plot.background = element_blank(), 
              plot.margin = unit(c(0,0,0,0), "cm"), 
              axis.title.x = element_blank(),
              axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5, color = "black"),
              axis.title.y = element_blank(),
              axis.ticks.y = element_blank(),
              axis.text.y = element_blank()) + xlab("Feature")

# Use patchwork to join plots
f + g + plot_layout(ncol = 1, heights = c(0.95, 0.05))

Hierarchical clustering of identity classes and features

Legend is used to defind the grouping labels when the labels are too long to fit within the annotation bar.

# Change to long names
levels(df$group) = c("long long name A", "long long name B", "long long name C", "long long name D")

# guides() is used to specify some aesthetic parameters of legend key
h <- ggplot(df, aes(x = x, y = 1, fill = group)) + geom_tile() + theme_bw(base_size = 12) +
        scale_fill_manual(values = color) + scale_y_continuous(expand = c(0, 0)) +
        guides(fill = guide_legend(direction = "vertical", label.position = "right",
                             title.theme = element_blank(), keyheight = 0.5, nrow = 2)) +
        theme(legend.position = "bottom", 
              legend.justification = "left",
              legend.margin = margin(0,0,0,0), 
              legend.box.margin = margin(-10,05,0,0),
              panel.spacing = unit(0, "lines"),
              panel.background = element_blank(),
              panel.border = element_blank(),
              plot.background = element_blank(),
              plot.margin = unit(c(0,0,0,0), "cm"),
              axis.title.x = element_blank(),
              axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5, color = "black"),
              axis.title.y = element_blank(),
              axis.ticks.y = element_blank(),
              axis.text.y = element_blank()) + xlab("Feature")
              
# Use patchwork to join plots
f + h + plot_layout(ncol = 1, heights = c(0.95, 0.05))

Hierarchical clustering of identity classes and features

Given a SingleCellExperiment obj

The expression and cluster information can be extracted from a processed SingleCellExperiment object to create a stacked violin plot with the ggplot2 package.

library(scater)
library(cowplot)

# Load sce obj
sce <- readRDS("data/pbmc_2k_v3_sce.rds")

The SingleCellExperiment object provided in this repository contains both raw and normalised counts. The cluster assignments are stored in the colData.

> sce
class: SingleCellExperiment 
dim: 18791 1865 
metadata(1): Samples
assays(2): counts logcounts
rownames(18791): AL627309.1 AL627309.3 ... AL354822.1 AC240274.1
rowData names(6): ID Symbol ... detected n_cells
colnames(1865): AACAACCTCACCTCTG-1 AGGAGGTTCGCGGACT-1 ...
  AATGGAACAGTAGGAC-1 CCCAACTTCTCGAGTA-1
colData names(13): Sample Barcode ... total label
reducedDimNames(1): PCA
spikeNames(0):
altExpNames(0):

Store the required information from the sce object in a data.frame, and create stacked violin plot.

features <- c("CD79A", "MS4A1", "CD8A", "CD8B", "LYZ", "LGALS3", "S100A8", "GNLY",
              "NKG7", "KLRB1", "FCGR3A", "FCER1A", "CST3")

# Subset dgCMatrix
pbmc <- assay(sce, "logcounts")[features,]

# Transpose and convert to data.frame
pbmc <- as.data.frame(t(as.matrix(pbmc)))

# Add cell ID and identity classes
pbmc$Cell <- rownames(pbmc)
pbmc$Cluster <- sce$label

# Use melt to change data.frame format
pbmc <- reshape2::melt(pbmc, id.vars = c("Cell","Cluster"), measure.vars = features,
                       variable.name = "Feat", value.name = "Expr")

f <- ggplot(pbmc, aes(factor(Feat), Expr, fill = Feat)) +
        geom_violin(scale = "width", adjust = 1, trim = TRUE) +
        scale_y_continuous(expand = c(0, 0), position="right", labels = function(x)
                           c(rep(x = "", times = length(x)-2), x[length(x) - 1], "")) +
        facet_grid(rows = vars(Cluster), scales = "free", switch = "y") +
        theme_cowplot(font_size = 12) +
        theme(legend.position = "none", panel.spacing = unit(0, "lines"),
              panel.background = element_rect(fill = NA, color = "black"),
              strip.background = element_blank(),
              strip.text = element_text(face = "bold"),
              strip.text.y.left = element_text(angle = 0),
              axis.text.x = element_text(angle = 90, hjust = 1, vjust = 0.5)) +
        ggtitle("Feature on x-axis") + xlab("Feature") + ylab("Expression Level")
f

Using ggplot2 on SingleCellExperiment object

 

转发自:https://github.com/ycl6/StackedVlnPlot

posted @ 2021-09-18 14:45  何帅  阅读(1069)  评论(0编辑  收藏  举报