(十四)Exploring Your Data
Sample Dataset
Now that we’ve gotten a glimpse of the basics, let’s try to work on a more realistic dataset. I’ve prepared a sample of fictitious JSON documents of customer bank account information. Each document has the following schema:
现在我们已经了解了基础知识,让我们尝试更真实的数据集。我准备了一份关于客户银行账户信息的虚构JSON文档样本。每个文档都有以下架构:
{ "account_number": 0, "balance": 16623, "firstname": "Bradshaw", "lastname": "Mckenzie", "age": 29, "gender": "F", "address": "244 Columbus Place", "employer": "Euron", "email": "bradshawmckenzie@euron.com", "city": "Hobucken", "state": "CO" }
For the curious, this data was generated using www.json-generator.com/
, so please ignore the actual values and semantics of the data as these are all randomly generated.
奇怪的是,这些数据是使用www.json-generator.com/生成的,因此请忽略数据的实际值和语义,因为这些都是随机生成的。
Loading the Sample Dataset
You can download the sample dataset (accounts.json) from here. Extract it to our current directory and let’s load it into our cluster as follows:
您可以从此处下载示例数据集(accounts.json)。将它解压缩到我们当前的目录,然后将它们加载到我们的集群中,如下所示:
curl -H "Content-Type: application/json" -XPOST "localhost:9200/bank/_doc/_bulk?pretty&refresh" --data-binary "@accounts.json" curl "localhost:9200/_cat/indices?v"
And the response:
health status index uuid pri rep docs.count docs.deleted store.size pri.store.size yellow open bank l7sSYV2cQXmu6_4rJWVIww 5 1 1000 0 128.6kb 128.6kb
Which means that we just successfully bulk indexed 1000 documents into the bank index (under the _doc
type).
这意味着我们只是成功地将1000个文档批量索引到银行索引(在_doc类型下)。