深度学习与CV教程(4) | 神经网络与反向传播

ShowMeAI研究中心


Backpropagation and Neural Networks

本系列为 斯坦福CS231n 《深度学习与计算机视觉(Deep Learning for Computer Vision)》的全套学习笔记,对应的课程视频可以在 这里 查看。更多资料获取方式见文末。


引言

在上一篇 深度学习与CV教程(3) | 损失函数与最优化 内容中,我们给大家介绍了线性模型的损失函数构建与梯度下降等优化算法,【本篇内容】ShowMeAI给大家切入到神经网络,讲解神经网络计算图与反向传播以及神经网络结构等相关知识。

本篇重点

  • 神经网络计算图
  • 反向传播
  • 神经网络结构

1.反向传播算法

神经网络的训练,应用到的梯度下降等方法,需要计算损失函数的梯度,而其中最核心的知识之一是反向传播,它是利用数学中链式法则递归求解复杂函数梯度的方法。而像tensorflow、pytorch等主流AI工具库最核心的智能之处也是能够自动微分,在本节内容中ShowMeAI就结合cs231n的第4讲内容展开讲解一下神经网络的计算图和反向传播。

关于神经网络反向传播的解释也可以参考ShowMeAI深度学习教程 | 吴恩达专项课程 · 全套笔记解读 中的文章 神经网络基础浅层神经网络深层神经网络 里对于不同深度的网络前向计算和反向传播的讲解

1.1 标量形式反向传播

1) 引例

我们来看一个简单的例子,函数为 \(f(x,y,z) = (x + y) z\)。初值 \(x = -2\)\(y = 5\)\(z = -4\)。这是一个可以直接微分的表达式,但是我们使用一种有助于直观理解反向传播的方法来辅助理解。

下图是整个计算的线路图,绿字部分是函数值,红字是梯度。(梯度是一个向量,但通常将对 \(x\) 的偏导数称为 \(x\) 上的梯度。)

标量形式反向传播; 梯度计算线路图


上述公式可以分为2部分, \(q = x + y\)\(f = q z\)。它们都很简单可以直接写出梯度表达式:

  • \(f\)\(q\)\(z\) 的乘积, 所以 \(\frac{\partial f}{\partial q} = z=-4\)\(\frac{\partial f}{\partial z} = q=3\)
  • \(q\)\(x\)\(y\) 相加,所以 \(\frac{\partial q}{\partial x} = 1\)\(\frac{\partial q}{\partial y} = 1\)

我们对 \(q\) 上的梯度不关心( \(\frac{\partial f}{\partial q}\) 没有用处)。我们关心 \(f\) 对于 \(x,y,z\) 的梯度。链式法则告诉我们可以用「乘法」将这些梯度表达式链接起来,比如

\[\frac{\partial f}{\partial x} = \frac{\partial f}{\partial q} \frac{\partial q}{\partial x} =-4 \]

  • 同理, \(\frac{\partial f}{\partial y} =-4\),还有一点是 \(\frac{\partial f}{\partial f}=1\)

前向传播从输入计算到输出(绿色),反向传播从尾部开始,根据链式法则递归地向前计算梯度(显示为红色),一直到网络的输入端。可以认为,梯度是从计算链路中回流


上述计算的参考 python 实现代码如下:

# 设置输入值
x = -2; y = 5; z = -4

# 进行前向传播
q = x + y # q 是 3
f = q * z # f 是 -12

# 进行反向传播:
# 首先回传到 f = q * z
dfdz = q # df/dz = q, 所以关于z的梯度是3
dfdq = z # df/dq = z, 所以关于q的梯度是-4
# 现在回传到q = x + y
dfdx = 1.0 * dfdq # dq/dx = 1. 这里的乘法是因为链式法则。所以df/dx是-4
dfdy = 1.0 * dfdq # dq/dy = 1.所以df/dy是-4

'''一般可以省略df'''

2) 直观理解反向传播

反向传播是一个优美的局部过程。

以下图为例,在整个计算线路图中,会给每个门单元(也就是 \(f\) 结点)一些输入值 \(x\) , \(y\) 并立即计算这个门单元的输出值 \(z\) ,和当前节点输出值关于输入值的局部梯度(local gradient) \(\frac{\partial z}{\partial x}\)\(\frac{\partial z}{\partial y}\)

标量形式反向传播; 反向传播门单元


门单元的这两个计算在前向传播中是完全独立的,它无需知道计算线路中的其他单元的计算细节。但在反向传播的过程中,门单元将获得整个网络的最终输出值在自己的输出值上的梯度 \(\frac{\partial L}{\partial z}\)

根据链式法则,整个网络的输出对该门单元的每个输入值的梯度,要用回传梯度乘以它的输出对输入的局部梯度,得到 \(\frac{\partial L}{\partial x}\)\(\frac{\partial L}{\partial y}\) 。这两个值又可以作为前面门单元的回传梯度。

因此,反向传播可以看做是门单元之间在通过梯度信号相互通信,只要让它们的输入沿着梯度方向变化,无论它们自己的输出值在何种程度上升或降低,都是为了让整个网络的输出值更高。

比如引例中 \(x,y\) 梯度都是 \(-4\),所以让 \(x,y\) 减小后,\(q\) 的值虽然也会减小,但最终的输出值 \(f\) 会增大(当然损失函数要的是最小)。

3) 加法门、乘法门和max门

引例中用到了两种门单元:加法和乘法。

  • 加法求偏导: \(f(x,y) = x + y \rightarrow \frac{\partial f}{\partial x} = 1 \frac{\partial f}{\partial y} = 1\)
  • 乘法求偏导: \(f(x,y) = x y \rightarrow \frac{\partial f}{\partial x} = y \frac{\partial f}{\partial y} = x\)

除此之外,常用的操作还包括取最大值:

\[\begin{aligned} f(x,y) &= \max(x, y) \\ \rightarrow \frac{\partial f}{\partial x} &= \mathbb{1}(x \ge y)\\ \frac{\partial f}{\partial y} &\mathbb{1}(y \ge x) \end{aligned} \]

上式含义为:若该变量比另一个变量大,那么梯度是 \(1\),反之为 \(0\)

标量形式反向传播; 加法门、乘法门和max门


  • 加法门单元是梯度分配器,输入的梯度都等于输出的梯度,这一行为与输入值在前向传播时的值无关;
  • 乘法门单元是梯度转换器,输入的梯度等于输出梯度乘以另一个输入的值,或者乘以倍数 \(a\)\(ax\) 的形式乘法门单元);max 门单元是梯度路由器,输入值大的梯度等于输出梯度,小的为 \(0\)

乘法门单元的局部梯度就是输入值,但是是相互交换之后的,然后根据链式法则乘以输出值的梯度。基于此,如果乘法门单元的其中一个输入非常小,而另一个输入非常大,那么乘法门会把大的梯度分配给小的输入,把小的梯度分配给大的输入。

以我们之前讲到的线性分类器为例,权重和输入进行点积 \(w^Tx_i\) ,这说明输入数据的大小对于权重梯度的大小有影响。具体的,如在计算过程中对所有输入数据样本 \(x_i\) 乘以 100,那么权重的梯度将会增大 100 倍,这样就必须降低学习率来弥补。

也说明了数据预处理有很重要的作用,它即使只是有微小变化,也会产生巨大影响

对于梯度在计算线路中是如何流动的有一个直观的理解,可以帮助调试神经网络。

4) 复杂示例

我们来看一个复杂一点的例子:

\[f(w,x) = \frac{1}{1+e^{-(w_0x_0 + w_1x_1 + w_2)}} \]

这个表达式需要使用新的门单元:

\[\begin{aligned} f(x) &= \frac{1}{x} \\ \rightarrow \frac{df}{dx} &=- \frac{1}{x^2}\ f_c(x) = c + x \\ \rightarrow \frac{df}{dx} &= 1 \ f(x) = e^x \\ \rightarrow \frac{df}{dx} &= e^x \ f_a(x) = ax \\ \rightarrow \frac{df}{dx} &= a \end{aligned} \]

计算过程如下:

神经网络&反向传播; 反向传播计算过程


  • 对于 \(1/x\) 门单元,回传梯度是 \(1\),局部梯度是 \(-1/x^2=-1/1.37^2=-0.53\) ,所以输入梯度为 \(1 \times -0.53 = -0.53\)\(+1\) 门单元不改变梯度还是 \(-0.53\)
  • exp门单元局部梯度是 \(e^x=e^{-1}\) ,然后乘回传梯度 \(-0.53\) 结果约为 \(-0.2\)
  • \(-1\) 门单元会将梯度加负号变为 \(0.2\)
  • 加法门单元会分配梯度,所以从上到下三个加法分支都是 \(0.2\)
  • 最后两个乘法单元会转换梯度,把回传梯度乘另一个输入值作为自己的梯度,得到 \(-0.2\)\(0.4\)\(-0.4\)\(-0.6\)

5) Sigmoid门单元

我们可以将任何可微分的函数视作「门」。可以将多个门组合成一个门,也可以根据需要将一个函数拆成多个门。我们观察可以发现,最右侧四个门单元可以合成一个门单元,\(\sigma(x) = \frac{1}{1+e^{-x}}\) ,这个函数称为 sigmoid 函数

sigmoid 函数可以微分:

\[\frac{d\sigma(x)}{dx} = \frac{e^{-x}}{(1+e^{-x})^2} = \left( \frac{1 + e^{-x} - 1}{1 + e^{-x}} \right) \left( \frac{1}{1+e^{-x}} \right) = \left( 1 - \sigma(x) \right) \sigma(x) \]

所以上面的例子中已经计算出 \(\sigma(x)=0.73\) ,可以直接计算出乘 \(-1\) 门单元输入值的梯度为:\(1 \ast (1-0.73) \ast0.73~=0.2\),计算简化很多。


上面这个例子的反向传播的参考 python 实现代码如下:

# 假设一些随机数据和权重
w = [2,-3,-3] 
x = [-1, -2]

# 前向传播,计算输出值
dot = w[0]*x[0] + w[1]*x[1] + w[2]
f = 1.0 / (1 + math.exp(-dot)) # sigmoid函数

# 反向传播,计算梯度
ddot = (1 - f) * f # 点积变量的梯度, 使用sigmoid函数求导
dx = [w[0] * ddot, w[1] * ddot] # 回传到x
dw = [x[0] * ddot, x[1] * ddot, 1.0 * ddot] # 回传到w
# 最终得到输入的梯度

在实际操作中,有时候我们会把前向传播分成不同的阶段,这样可以让反向传播过程更加简洁。比如创建一个中间变量 \(dot\),存放 \(w\)\(x\) 的点乘结果。在反向传播时,可以很快计算出装着 \(w\)\(x\) 等的梯度的对应的变量(比如 \(ddot\)\(dx\)\(dw\))。

本篇内容列了很多例子,我们希望通过这些例子讲解「前向传播」与「反向传播」过程,哪些函数可以被组合成门,如何简化,这样他们可以“链”在一起,让代码量更少,效率更高。

6) 分段计算示例

\[f(x,y) = \frac{x + \sigma(y)}{\sigma(x) + (x+y)^2} \]

这个表达式只是为了实践反向传播,如果直接对 \(x,y\) 求导,运算量将会很大。下面先代码实现前向传播:

x = 3  # 例子数值
y = -4

# 前向传播
sigy = 1.0 / (1 + math.exp(-y)) # 分子中的sigmoid         #(1)
num = x + sigy # 分子                                    #(2)
sigx = 1.0 / (1 + math.exp(-x)) # 分母中的sigmoid         #(3)
xpy = x + y                                              #(4)
xpysqr = xpy**2                                          #(5)
den = sigx + xpysqr # 分母                                #(6)
invden = 1.0 / den                                       #(7)
f = num * invden     

代码创建了多个中间变量,每个都是比较简单的表达式,它们计算局部梯度的方法是已知的。可以给我们计算反向传播带来很多便利:

  • 我们对前向传播时产生的每个变量 $ (sigy, num, sigx, xpy, xpysqr, den, invden)$ 进行回传。
  • 我们用同样数量的变量(以 d 开头),存储对应变量的梯度。
  • 注意:反向传播的每一小块中都将包含了表达式的局部梯度,然后根据使用链式法则乘以上游梯度。对于每行代码,我们将指明其对应的是前向传播的哪部分,序号对应。
# 回传 f = num * invden
dnum = invden # 分子的梯度                                         #(8)
dinvden = num # 分母的梯度                                         #(8)
# 回传 invden = 1.0 / den 
dden = (-1.0 / (den**2)) * dinvden                                #(7)
# 回传 den = sigx + xpysqr
dsigx = (1) * dden                                                #(6)
dxpysqr = (1) * dden                                              #(6)
# 回传 xpysqr = xpy**2
dxpy = (2 * xpy) * dxpysqr                                        #(5)
# 回传 xpy = x + y
dx = (1) * dxpy                                                   #(4)
dy = (1) * dxpy                                                   #(4)
# 回传 sigx = 1.0 / (1 + math.exp(-x))
dx += ((1 - sigx) * sigx) * dsigx # 注意这里用的是+=,下面有解释    #(3)
# 回传 num = x + sigy
dx += (1) * dnum                                                  #(2)
dsigy = (1) * dnum                                                #(2)
# 回传 sigy = 1.0 / (1 + math.exp(-y))
dy += ((1 - sigy) * sigy) * dsigy   

补充解释

①对前向传播变量进行缓存

  • 在计算反向传播时,前向传播过程中得到的一些中间变量非常有用。
  • 实现过程中,在代码里对这些中间变量进行缓存,这样在反向传播的时候也能用上它们。

②在不同分支的梯度要相加

  • 如果变量 \(x,y\) 在前向传播的表达式中出现多次,那么进行反向传播的时候就要非常小心,要使用\(+=\) 而不是 \(=\) 来累计这些变量的梯度。
  • 根据微积分中的多元链式法则,如果变量在线路中走向不同的分支,那么梯度在回传的时候,应该累加 。即:

\[\frac{\partial f}{\partial x} =\sum_{q_i}\frac{\partial f}{\partial q_i}\frac{\partial q_i}{\partial x} \]

7) 实际应用

如果有一个计算图,已经拆分成门单元的形式,那么主类代码结构如下:

class ComputationalGraph(object):
    # ...
    def forward(self, inputs):
        # 把inputs传递给输入门单元
        # 前向传播计算图
        # 遍历所有从后向前按顺序排列的门单元
        for gate in self.graph.nodes_topologically_sorted(): 
            gate.forward()  # 每个门单元都有一个前向传播函数
        return loss  # 最终输出损失

    def backward(self):
        # 反向遍历门单元
        for gate in reversed(self.graph.nodes_topologically_sorted()): 
            gate.backward()  # 反向传播函数应用链式法则
        return inputs_gradients  # 输出梯度
        return inputs_gradients  # 输出梯度

门单元类可以这么定义,比如一个乘法单元:

class MultiplyGate(object):
    def forward(self, x, y):
        z = x*y
        self.x = x
        self.y = y
        return z

    def backward(self, dz):
        dx = self.y * dz
        dy = self.x * dz
        return [dx, dy]

1.2 向量形式反向传播

先考虑一个简单的例子,比如:

向量形式反向传播; 输入和输出都是4096维的max函数


这个 \(max\) 函数对输入向量 \(x\) 的每个元素都和 \(0\) 比较输出最大值,因此输出向量的维度也是 \(4096\)维。此时的梯度是雅可比矩阵,即输出的每个元素对输入的每个元素求偏导组成的矩阵

假如输入 \(x\)\(n\) 维的向量,输出 \(y\)\(m\) 维的向量,则 \(y_1,y_2, \cdots,y_m\) 都是 \((x_1-x_n)\) 的函数,得到的雅克比矩阵如下所示:

\[\left[\begin{array}{ccc} \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}} \end{array}\right] \]

那么这个例子的雅克比矩阵是 \([4096 \times 4096]\) 维的,输出有 \(4096\) 个元素,每一个都要求 \(4096\) 次偏导。其实仔细观察发现,这个例子输出的每个元素都只和输入相应位置的元素有关,因此得到的是一个对角矩阵。

实际应用的时候,往往 100 个 \(x\) 同时输入,此时雅克比矩阵是一个 \([409600 \times 409600]\) 的对角矩阵,当然只是针对这里的 \(f\) 函数。

实际上,完全写出并存储雅可比矩阵不太可能,因为维度极其大。

1) 一个例子

目标公式为: \(f(x,W)=\vert \vert W\cdot x \vert \vert ^2=\sum_{i=1}^n (W\cdot x)_{i}^2\)

其中 \(x\)\(n\) 维的向量,\(W\)\(n \times n\) 的矩阵。

\(q=W\cdot x\) ,于是得到下面的式子:

\[\left[\begin{array}{ccc} \frac{\partial y_{1}}{\partial x_{1}} & \cdots & \frac{\partial y_{1}}{\partial x_{n}} \\ \vdots & \ddots & \vdots \\ \frac{\partial y_{m}}{\partial x_{1}} & \cdots & \frac{\partial y_{m}}{\partial x_{n}} \end{array}\right] \]


\[\begin{array}{l} q=W \cdot x=\left(\begin{array}{c} W_{1,1} x_{1}+\cdots+W_{1, n} x_{n} \\ \vdots \\ W_{n, 1} x_{1}+\cdots+W_{n, n} x_{n} \end{array}\right) \\ \end{array} \]


\[f(q)=\|q\|^{2}=q_{1}^{2}+\cdots+q_{n}^{2} \]


可以看出:

  • \(\frac{\partial f}{\partial q_i}=2q_i\) 从而得到 \(f\)\(q\) 的梯度为 \(2q\)

  • \(\frac{\partial q_k}{\partial W_{i, j}}=1{i=k}x_j\)\(\frac{\partial f}{\partial W_{i, j}}=\sum_{k=1}^n\frac{\partial f}{\partial q_k}\frac{\partial q_k}{\partial W_{i, j}}=\sum_{k=1}^n(2q_k)1{i=k}x_j=2q_ix_j\),从而得到 \(f\)\(W\) 的梯度为 \(2q\cdot x^T\)

  • \(\frac{\partial q_k}{\partial x_i}=W_{k,i}\)\(\frac{\partial f}{\partial x_i}=\sum_{k=1}^n\frac{\partial f}{\partial q_k}\frac{\partial q_k}{\partial x_i}=\sum_{k=1}^n(2q_k)W_{k,i}\) ,从而得到 \(f\)\(x\) 的梯度为 \(2W^T\cdot q\)


下面为计算图:

标量形式反向传播; 向量化计算图


2) 代码实现

import numpy as np

# 初值
W = np.array([[0.1, 0.5], [-0.3, 0.8]])
x = np.array([0.2, 0.4]).reshape((2, 1))  # 为了保证dq.dot(x.T)是一个矩阵而不是实数

# 前向传播
q = W.dot(x)
f = np.sum(np.square(q), axis=0)

# 反向传播
# 回传 f = np.sum(np.square(q), axis=0)
dq = 2*q
# 回传 q = W.dot(x)
dW = dq.dot(x.T)  # x.T就是对矩阵x进行转置
dx = W.T.dot(dq)

注意:要分析维度!不要去记忆 \(dW\)\(dx\) 的表达式,因为它们很容易通过维度推导出来。

权重的梯度 \(dW\) 的尺寸肯定和权重矩阵 \(W\) 的尺寸是一样的

  • 这里的 \(f\) 输出是一个实数,所以 \(dW\)\(W\) 的形状一致。
  • 如果考虑 \(dq/dW\) 的话,如果按照雅克比矩阵的定义,\(dq/dw\) 应该是 \(2 \times 2 \times 2\) 维,为了减小计算量,就令其等于 \(x\)
  • 其实完全不用考虑那么复杂,因为最终的损失函数一定是一个实数,所以每个门单元的输入梯度一定和原输入形状相同。 关于这点的说明,可以 点击这里,官网进行了详细的推导。
  • 而这又是由 \(x\)\(dq\) 的矩阵乘法决定的,总有一个方式是能够让维度之间能够对的上的。

例如,\(x\) 的尺寸是 \([2 \times 1]\)\(dq\) 的尺寸是 \([2 \times 1]\),如果你想要 \(dW\)\(W\) 的尺寸是 \([2 \times 2]\),那就要 dq.dot(x.T),如果是 x.T.dot(dq) 结果就不对了。(\(dq\) 是回传梯度不能转置!)

2.神经网络简介

2.1 神经网络算法介绍

在不诉诸大脑的类比的情况下,依然是可以对神经网络算法进行介绍的。

在线性分类一节中,在给出图像的情况下,是使用 \(Wx\) 来计算不同视觉类别的评分,其中 \(W\) 是一个矩阵,\(x\) 是一个输入列向量,它包含了图像的全部像素数据。在使用数据库 CIFAR-10 的案例中,\(x\) 是一个 \([3072 \times 1]\) 的列向量,\(W\) 是一个 \([10 \times 3072]\) 的矩阵,所以输出的评分是一个包含10个分类评分的向量。

一个两层的神经网络算法则不同,它的计算公式是 \(s = W_2 \max(0, W_1 x)\)


\(W_1\) 的含义:举例来说,它可以是一个 \([100 \times 3072]\) 的矩阵,其作用是将图像转化为一个100维的过渡向量,比如马的图片有头朝左和朝右,会分别得到一个分数。

函数 \(max(0,-)\) 是非线性的,它会作用到每个元素。这个非线性函数有多种选择,大家在后续激活函数里会再看到。现在看到的这个函数是最常用的ReLU激活函数,它将所有小于 \(0\) 的值变成 \(0\)

矩阵 \(W_2\) 的尺寸是 \([10 \times 100]\),会对中间层的得分进行加权求和,因此将得到 10 个数字,这10个数字可以解释为是分类的评分。

注意:非线性函数在计算上是至关重要的,如果略去这一步,那么两个矩阵将会合二为一,对于分类的评分计算将重新变成关于输入的线性函数。这个非线性函数就是改变的关键点。

参数 \(W_1\) **,$ **W_2$ 将通过随机梯度下降来学习到,他们的梯度在反向传播过程中,通过链式法则来求导计算得出。

一个三层的神经网络可以类比地看做 \(s = W_3 \max(0, W_2 \max(0, W_1 x))\) ,其中\(W_1\), \(W_2\) ,\(W_3\) 是需要进行学习的参数。中间隐层的尺寸是网络的超参数,后续将学习如何设置它们。现在让我们先从神经元或者网络的角度理解上述计算。


两层神经网络参考代码实现如下,中间层使用 sigmoid 函数:

import numpy as np
from numpy.random import randn

N, D_in, H, D_out = 64, 1000, 100, 10
# x 是64x1000的矩阵,y是64x10的矩阵
x, y = randn(N, D_in), randn(N, D_out)
# w1是1000x100的矩阵,w2是100x10的矩阵
w1, w2 = randn(D_in, H), randn(H, D_out)

# 迭代10000次,损失达到0.0001级
for t in range(10000):
    h = 1 / (1 + np.exp(-x.dot(w1)))  # 激活函数使用sigmoid函数,中间层
    y_pred = h.dot(w2)
    loss = np.square(y_pred - y).sum()  # 损失使用 L2 范数
    print(str(t)+': '+str(loss))

    # 反向传播
    grad_y_pred = 2.0 * (y_pred - y)
    grad_w2 = h.T.dot(grad_y_pred)
    grad_h = grad_y_pred.dot(w2.T)
    # grad_xw1 = grad_h*h*(1-h)
    grad_w1 = x.T.dot(grad_h*h*(1-h))

    # 学习率是0.0001
    w1 -= 1e-4 * grad_w1
    w2 -= 1e-4 * grad_w2

2.2 神经网络与真实的神经对比

神经网络算法很多时候是受生物神经系统启发而简化模拟得到的。

大脑的基本计算单位是神经元(neuron) 。人类的神经系统中大约有 860 亿个神经元,它们被大约 1014 - 1015 个突触(synapses) 连接起来。下图的上方是一个生物学的神经元,下方是一个简化的常用数学模型。每个神经元都从它的树突(dendrites) 获得输入信号,然后沿着它唯一的轴突(axon) 产生输出信号。轴突在末端会逐渐分枝,通过突触和其他神经元的树突相连。

神经网络简介; 神经元 V.S. 数学模型


在神经元的计算模型中,沿着轴突传播的信号(比如 \(x_0\) )将基于突触的突触强度(比如 \(w_0\) ),与其他神经元的树突进行乘法交互(比如 \(w_0 x_0\) )。

对应的想法是,突触的强度(也就是权重 \(w\) ),是可学习的且可以控制一个神经元对于另一个神经元的影响强度(还可以控制影响方向:使其兴奋(正权重)或使其抑制(负权重))。

树突将信号传递到细胞体,信号在细胞体中相加。如果最终之和高于某个阈值,那么神经元将会「激活」,向其轴突输出一个峰值信号。

在计算模型中,我们假设峰值信号的准确时间点不重要,是激活信号的频率在交流信息。基于这个速率编码的观点,将神经元的激活率建模为激活函数(activation function) \(f\) ,它表达了轴突上激活信号的频率。

由于历史原因,激活函数常常选择使用sigmoid函数 \(\sigma\) ,该函数输入实数值(求和后的信号强度),然后将输入值压缩到 \(0\sim 1\) 之间。在本节后面部分会看到这些激活函数的各种细节。


这里的激活函数 \(f\) 采用的是 sigmoid 函数,代码如下:

class Neuron:
    # ...
    def neuron_tick(self, inputs):
        # 假设输入和权重都是1xD的向量,偏差是一个数字
        cell_body_sum = np.sum(inputs*self.weights) + self.bias
        # 当和远大于0时,输出为1,被激活
        firing_rate = 1.0 / (1.0 + np.exp(-cell_body_sum))
        return firing_rate

2.3 常用的激活函数

神经网络简介; 常用的激活函数

3.神经网络结构

关于神经网络结构的知识也可以参考ShowMeAI深度学习教程 | 吴恩达专项课程 · 全套笔记解读 中的文章 神经网络基础浅层神经网络深层神经网络 里对于不同深度的网络结构的讲解

对于普通神经网络,最普通的层级结构是全连接层(fully-connected layer) 。全连接层中的神经元与其前后两层的神经元是完全成对连接的,但是在同层内部的神经元之间没有连接。网络结构中没有循环(因为这样会导致前向传播的无限循环)。

下面是两个神经网络的图例,都使用的全连接层:

神经网络结构; 全连接神经网络


  • 左边:一个2层神经网络,隐层由4个神经元(也可称为单元(unit))组成,输出层由2个神经元组成,输入层是3个神经元(指的是输入图片的维度而不是图片的数量)。
  • 右边:一个3层神经网络,两个含4个神经元的隐层。

注意:当我们说 \(N\) 层神经网络的时候,我们并不计入输入层。单层的神经网络就是没有隐层的(输入直接映射到输出)。也会使用人工神经网络(Artificial Neural Networks 缩写ANN)或者多层感知器(Multi-Layer Perceptrons 缩写MLP)来指代全连接层构建的这种神经网络。此外,输出层的神经元一般不含激活函数。


用来度量神经网络的尺寸的标准主要有两个:一个是神经元的个数,另一个是参数的个数。用上面图示的两个网络举例:

  • 第一个网络有 \(4+2=6\) 个神经元(输入层不算),\([3 \times 4]+[4 \times 2]=20\) 个权重,还有\(4+2=6\) 个偏置,共 \(26\) 个可学习的参数。
  • 第二个网络有 \(4+4+1=9\) 个神经元,\([3 \times 4]+[4 \times 4]+[4 \times 1]=32\) 个权重,\(4+4+1=9\) 个偏置,共 \(41\) 个可学习的参数。

现代卷积神经网络能包含上亿个参数,可由几十上百层构成(这就是深度学习)。

3.1 三层神经网络代码示例

不断用相似的结构堆叠形成网络,这让神经网络算法使用矩阵向量操作变得简单和高效。我们回到上面那个3层神经网络,输入是 \([3 \times 1]\) 的向量。一个层所有连接的权重可以存在一个单独的矩阵中。

比如第一个隐层的权重 \(W_1\)\([4 \times 3]\),所有单元的偏置储存在 \(b_1\) 中,尺寸 \([4 \times 1]\)。这样,每个神经元的权重都在 \(W_1\) 的一个行中,于是矩阵乘法 np.dot(W1, x)+b1 就能作为该层中所有神经元激活函数的输入数据。类似的,\(W_2\) 将会是 \([4 \times 4]\) 矩阵,存储着第二个隐层的连接,\(W_3\)\([1 \times 4]\) 的矩阵,用于输出层。

完整的3层神经网络的前向传播就是简单的3次矩阵乘法,其中交织着激活函数的应用。


import numpy as np

# 三层神经网络的前向传播
# 激活函数
f = lambda x: 1.0/(1.0 + np.exp(-x))

# 随机输入向量3x1
x = np.random.randn(3, 1)
# 设置权重和偏差
W1, W2, W3 = np.random.randn(4, 3), np.random.randn(4, 4), np.random.randn(1, 4),
b1, b2= np.random.randn(4, 1), np.random.randn(4, 1)
b3 = 1

# 计算第一个隐藏层激活 4x1
h1 = f(np.dot(W1, x) + b1)
# 计算第二个隐藏层激活 4x1
h2 = f(np.dot(W2, h1) + b2)
# 输出是一个数
out = np.dot(W3, h2) + b3

在上面的代码中,\(W_1\)\(W_2\)\(W_3\)\(b_1\)\(b_2\)\(b_3\) 都是网络中可以学习的参数。注意 \(x\) 并不是一个单独的列向量,而可以是一个批量的训练数据(其中每个输入样本将会是 \(x\) 中的一列),所有的样本将会被并行化的高效计算出来。

注意神经网络最后一层通常是没有激活函数的(例如,在分类任务中它给出一个实数值的分类评分)。

全连接层的前向传播一般就是先进行一个矩阵乘法,然后加上偏置并运用激活函数。

3.2 理解神经网络

关于深度神经网络的解释也可以参考ShowMeAI深度学习教程 | 吴恩达专项课程 · 全套笔记解读 中的文章 深层神经网络 里「深度网络其他优势」部分的讲解

全连接层的神经网络的一种理解是:

  • 它们定义了一个由一系列函数组成的函数族,网络的权重就是每个函数的参数。

拥有至少一个隐层的神经网络是一个通用的近似器,神经网络可以近似任何连续函数。

虽然一个2层网络在数学理论上能完美地近似所有连续函数,但在实际操作中效果相对较差。虽然在理论上深层网络(使用了多个隐层)和单层网络的表达能力是一样的,但是就实践经验而言,深度网络效果比单层网络好。


对于全连接神经网络而言,在实践中3层的神经网络会比2层的表现好,然而继续加深(做到4,5,6层)很少有太大帮助。卷积神经网络的情况却不同,在卷积神经网络中,对于一个良好的识别系统来说,深度是一个非常重要的因素(比如当今效果好的CNN都有几十上百层)。对于该现象的一种解释观点是:因为图像拥有层次化结构(比如脸是由眼睛等组成,眼睛又是由边缘组成),所以多层处理对于这种数据就有直观意义。

4.拓展学习

可以点击 B站 查看视频的【双语字幕】版本

5.要点总结

  • 前向传播与反向传播
  • 标量与向量化形式计算
  • 求导链式法则应用
  • 神经网络结构
  • 激活函数
  • 理解神经网络

斯坦福 CS231n 全套解读

ShowMeAI 系列教程推荐

ShowMeAI用知识加速每一次技术成长

posted @ 2022-05-30 00:40  ShowMeAI  阅读(343)  评论(0编辑  收藏  举报