深度学习教程 | 浅层神经网络

收藏ShowMeAI查看更多精彩内容


第1门课 神经网络和深度学习,第3周:浅层神经网络

本系列为吴恩达老师《深度学习专项课程(Deep Learning Specialization)》学习与总结整理所得,对应的课程视频可以在这里查看。

引言

ShowMeAI前一篇文章 神经网络基础 中我们对以下内容进行了介绍:

  • 二分类问题、逻辑回归模型及损失函数。
  • 梯度下降算法。
  • 计算图与正向传播及反向传播。
  • 向量化方式并行计算与提效。

本篇内容我们将从浅层神经网络入手,逐步拓展到真正的神经网络模型知识学习。

1.神经网络表示

神经网络的表示 Neural Network Representation

图示为两层神经网络,也可以称作单隐层神经网络(a single hidden layer neural network)。这就是典型的浅层(shallow)神经网络,结构上,从左到右,可以分成三层:

  • 输入层(input layer):竖向堆叠起来的输入特征向量。
  • 隐藏层(hidden layer):抽象的非线性的中间层。
  • 输出层(output layer):输出预测值。

注意:当我们计算网络的层数时,通常不考虑输入层。因此图中隐藏层是第一层,输出层是第二层。

神经网络表示

有一些约定俗成的符号表示,如下:

  • 输入层的激活值为a[0],隐藏层产生的激活值,记作a[1]
  • 隐藏层的第一个单元(或者说节点)就记作a1[1],输出层同理。
  • 隐藏层和输出层都是带有参数Wb的,它们都使用上标[1]来表示是和第一个隐藏层有关,或者上标[2]来表示是和输出层有关。

2.计算神经网络的输出

2.1 两层神经网络

计算一个神经网络的输出 Computing a Neural Network's Output

接下来我们开始详细推导神经网络的计算过程

我们依旧来看看我们熟悉的逻辑回归,我们用其构建两层神经网络。逻辑回归的前向传播计算可以分解成计算za的两部分。

如果我们基于逻辑回归构建两层神经网络,前向计算从前往后要做2次计算:

  • 从输入层到隐藏层,对应一次逻辑回归运算。
  • 从隐藏层到输出层,对应一次逻辑回归运算。

神经网络前向计算

在每层计算中,我们注意对应的上标和下标:

  • 我们记上标方括号[]表示layer,记下标表示第几个神经元。例如,ai[l]表示第l层的第i个神经元。
  • 注意,i1开始,l0开始。

2.2 单个样本计算方式

我们将输入层到隐藏层的计算公式列出来:

神经网络前向计算

后续从隐藏层到输出层的计算公式为:

神经网络前向计算

上述每个节点的计算都对应着一次逻辑运算的过程,分别由计算za两部分组成

2.3 向量化计算

多样本向量化 Vectorizing across Multiple Examples

我们引入向量化思想提升计算效率,将上述表达式转换成矩阵运算的形式,如下所示:

神经网络前向计算

我们这里特别注意一下数据维度:

  • W[1]的维度是(4,3)
  • b[1]的维度是(4,1)
  • W[2]的维度是(1,4)
  • b[2]的维度是(1,1)

2.4 数据集向量化计算

向量化实现的解释 Justification for Vectorized Implementation

上面部分提到的是单个样本的神经网络正向传播矩阵运算过程。对于m个训练样本,我们也可以使用向量化矩阵运算的形式来提升计算效率。形式上,它和单个样本的矩阵运算十分相似,比较简单。我们记输入矩阵X的维度为(nx,m),则有:

神经网络前向计算

上述公式中,Z[1]的维度是(4,m),4是隐藏层神经元的个数;A[1]的维度与Z[1]相同;Z[2]A[2]的维度均为(1,m)

我们可以这样理解上述的矩阵:行表示神经元个数,列表示样本数目m

3.激活函数

激活函数 Activation Functions

3.1 不同的激活函数与选择

在神经网络中,隐藏层和输出层都需要激活函数(activation function),前面的例子中我们都默认使用Sigmoid函数σ(z)作为激活函数。实际我们有不同的激活函数可以选择,而且它们有各自的优点:

激活函数

(1) tanh 函数

the hyperbolic tangent function,双曲正切函数

a=ezezez+ez

优点:函数输出介于(1,1),激活函数的平均值就更接近0,有类似数据中心化的效果。效果几乎总比Sigmoid函数好(二元分类的输出层我们还是会用Sigmoid,因为我们希望输出的结果介于(0,1))。

缺点:当z趋紧无穷大(或无穷小),导数的梯度(即函数的斜率)就趋紧于0,这使得梯度算法的速度大大减缓。这一点和Sigmoid一样。

(2) ReLU函数

the rectified linear unit,修正线性单元

a=max(0,z)

优点:当z>0时,梯度始终为1,从而提高神经网络基于梯度算法的运算速度,收敛速度远大于Sigmoid和tanh。

缺点:当z<0时,梯度一直为0,但是实际的运用中,该缺陷的影响不是很大。

(3) Leaky ReLU

带泄漏的ReLU

a=max(0.01z,z)

优点:Leaky ReLU保证在z<0的时候,梯度仍然不为0。

理论上来说,Leaky ReLU有ReLU的所有优点,但在实际操作中没有证明总是好于ReLU,因此不常用。

总结

在选择激活函数的时候,如果在不知道该选什么的时候就选择ReLU。当然也没有固定答案,要依据实际问题在交叉验证集合中进行验证分析。注意,我们可以在不同层选用不同的激活函数。

3.2 使用非线性激活函数的原因

为什么需要非线性激活函数? Why Need a Nonlinear Activation Function?

使用线性激活函数和不使用激活函数、无论神经网络有多少层,输出都是输入的线性组合,与没有隐藏层效果相当,就成了最原始的感知器了。我们以2层神经网络做一个简单推导,如下:

假设所有的激活函数都是线性的,为了更简单一点,我们直接令激活函数g(z)=z,即a=z。那么,浅层神经网络的各层输出为:

z[1]=W[1]x+b[1]

a[1]=z[1]

z[2]=W[2]a[1]+b[2]

a[2]=z[2]

我们对上述公式中a[2]展开计算,得:

a[2]=z[2]=W[2]a[1]+b[2]=W[2](W[1]x+b[1])+b[2]=(W[2]W[1])x+(W[2]b[1]+b[2])=Wx+b

上述推导后,我们可以发现a[2]仍是输入变量x的线性组合!后续堆叠更多的层次,也可以依次类推,这表明,使用神经网络,如果不使用激活函数或使用线性激活函数,与直接使用线性模型的效果并没有什么两样!因此,隐藏层的激活函数必须要是非线性的。

不过,在部分场景下,比如是回归预测问题而不是分类问题,输出值y为连续值,输出层的激活函数可以使用线性函数。如果输出y恒为正值,则也可以使用ReLU激活函数,这些具体情况具体分析。

3.3 激活函数的导数

激活函数的导数 Derivatives of Activation Functions

我们来看一下不同激活函数的导数,这将在我们反向传播中频繁用到。

激活函数

4.神经网络的梯度下降法

神经网络的梯度下降 Gradient Descent for Neural Networks

下面我们来一起看看,神经网络中的梯度计算。

我们依旧以浅层神经网络为例,它包含的参数为W[1]b[1]W[2]b[2]

神经网络的梯度下降法

令输入层的特征向量个数nx=n[0],隐藏层神经元个数为n[1],输出层神经元个数为n[2]=1。则:

  • W[1]的维度为(n[1],n[0])
  • b[1]的维度为(n[1],1)
  • W[2]的维度为(n[2],n[1])
  • b[2]的维度为(n[2],1)

4.1 神经网络中的梯度下降

上述神经网络的前向传播过程,对应的公式如下图左侧。反向传播过程,我们会进行梯度计算,我们先列出Cost Function对各个参数的梯度,如下图右侧公式。

神经网络的梯度下降法

其中,np.sum使用到python中的numpy工具库,想了解更多的同学可以查看ShowMeAI图解数据分析 系列中的numpy教程,也可以通过ShowMeAI制作的numpy速查手册 快速了解其使用方法)

4.2 反向传播(拓展补充)

直观理解反向传播 Backpropagation Intuition

我们使用上篇内容 神经网络基础 中的计算图方式来推导神经网络反向传播。回忆我们前面提到的逻辑回归,推导前向传播和反向传播的计算图如下图所示:

神经网络的梯度下降法

因为多了隐藏层,神经网络的计算图要比逻辑回归的复杂一些,如下图所示。

神经网络的梯度下降法

综上,对于浅层神经网络(包含一个隐藏层)而言,「单个样本」和「m个训练样本」的反向传播过程分别对应如下的6个表达式(都是向量化矩阵形式):

神经网络的梯度下降法

5.随机初始化

随机初始化 Random + Initialization

5.1 全零初始化权重问题

我们在很多机器学习模型中,会初始化权重为0。但在神经网络模型中,参数权重W是不能全部初始化为零的,它会带来对称性问题(symmetry breaking problem),下面是分析过程。

假设一个浅层神经网络包含两个输入,隐藏层包含两个神经元。

NN权重初始化

如果权重W[1]W[2]都初始化为零,这样使得隐藏层第一个神经元的输出等于第二个神经元的输出,即a1[1]=a2[1]。容易得到dz1[1]=dz2[1],以及dW1[1]=dW2[1]

我们发现:隐藏层两个神经元对应的权重行向量W1[1]W2[1]每次迭代更新都会得到完全相同的结果,W1[1]始终等于W2[1],完全对称!这样隐藏层设置多个神经元就没有任何意义了。

当然,因为中间层每次只会有1个偏置项参数b,它可以全部初始化为零,并不会影响神经网络训练效果。

5.2 解决方法

上述提到的权重W全部初始化为零带来的问题就是symmetry breaking problem(对称性)。解决方法也很简单:在初始化的时候,W参数要进行随机初始化,不可以设置为0。而b因为不存在对称性的问题,可以设置为 0。

以 2 个输入,2 个隐藏神经元为例:

W = np.random.rand(2,2)* 0.01
b = np.zeros((2,1))

这里将 W 的值乘以 0.01(或者其他的常数值)的原因是为了使得权重 W 初始化为较小的值,这是因为使用 Sigmoid 函数或者 tanh 函数作为激活函数时:

  • W 比较小,则 Z=WX+b 所得的值趋近于 0,梯度较大,能够提高算法的更新速度。
  • W 设置的太大,得到的梯度较小,训练过程因此会变得很慢。

NN权重初始化

ReLU 和 Leaky ReLU 作为激活函数时不存在这种问题,因为在大于 0 的时候,梯度均为 1。如果输出层是Sigmoid函数,则对应的权重W最好初始化到比较小的值。

参考资料

ShowMeAI系列教程推荐

推荐文章

posted @   ShowMeAI  阅读(498)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 单元测试从入门到精通
· 上周热点回顾(3.3-3.9)
· winform 绘制太阳,地球,月球 运作规律
点击右上角即可分享
微信分享提示