随笔分类 - 数据分析 ⛵ 面试宝典&实战项目
数据分析是AI从业者的基本功!ShowMeAI在这里分享基础&最新的工具库教程,也展示趣味/时事数据分析的完整代码流程,还有面试场景下的SQL必学要点!有趣又有料!@ShowMeAI研究中心
摘要:
本文使用 Kaggle 数据集创建了一个Demo,演示如何使用 Python 调用 ipywidget 模块,快速创建交互式仪表板。快用起来吧~
阅读全文

摘要:
本文介绍了 Parquet 和 Feather 两种文件类型,可以提高本地存储数据时的读写速度,并压缩存储在磁盘上的数据大小。大型 CSV 文件的克星!用起来~
阅读全文

摘要:
本文介绍如何使用 Pandas Profiling 的比较报告功能,分析两个数据集的分布差异,完成数据探索分析 (EDA) 的完整流程,为后续分析做准备。
阅读全文

摘要:
本文对比筛选了『数据清理』和『特征工程』最值得推荐的5本书,帮助你有效地清理数据、获取干净核心的数据,这是后续建模分析等工作有更好结果的保证。
阅读全文

摘要:
本文揭秘全球数据科学岗位的薪资分布情况!以及分析岗位、国家、工作经验、雇佣形式、公司规模对薪资的影响,并贴心提供了求职建议和跳槽Tips!
阅读全文

摘要:
本文结合航空出行的场景,使用机器学习建模,详细分析了航班乘客满意度的影响因素:机上Wi-Fi服务、在线登机、机上娱乐质量、餐饮、座椅舒适度、机舱清洁度和腿部空间等。
阅读全文

摘要:
使用Python内置库SQLite,可以方便地完成建表、插入数据、查询数据等数据库操作,也可以配合pandas进行灵活使用!高效工具库get!
阅读全文

摘要:
同一个数据分析的需求,不同人的SQL代码效率上会差别很大!本文给大家梳理集中效率优化方法,这也是数据岗面试的高频问题哦!快学起来~
阅读全文

摘要:
本文详细介绍了Vaex这个强大的工具库,能够每秒处理数亿甚至数十亿行数据,而无需将整个数据集加载到内存中。对于大型数据的分析任务,Vaex的效率更简单,对硬件/环境的要求更少!pandas升级版!快用起来吧~
阅读全文

摘要:
本文汇总介绍了21个 Pandas 进阶用法,能保持代码整洁优雅,更能提高代码效率!这篇是从数据科学家朋友那里搞到的私藏,快一起薅羊毛~
阅读全文

摘要:
本文讲解二维码的生成与解码:使用Python工具库qrcode『构建二维码』,使用cv2和pyzbar两类工具库『解码二维码』。二维码是目前最常使用的快捷信息存储方式之一,读完本篇即可掌握这一必备技能!
阅读全文

摘要:
大量的数据科学职位需要精通 SQL,它也是数据分析师、数据科学家、数据建模岗最常考核的面试技能。在本篇内容中 ShowMeAI 将梳理汇总所有面试 SQL 问题,按照不同的主题构建练习专项块。
阅读全文

摘要:
本文系统介绍了『单变量异常检测』和『多变量异常检测』识别技术,包括传统的统计方法(四分位距、标准差),以及前沿的机器学习模型(孤立森林、DBSCAN、LOF局部离群因子)。
阅读全文

摘要:
本文介绍了7个超实用的Jupyter Notebook扩展插件,帮助你加速开发与应用:Voilà、nbdime、RISE、Bokeh、nbgrader、Jupytext、jupyterlab-git。
阅读全文

摘要:
本文讲解Pandas工具库几个核心函数,能高效处理时间序列:resample、shift、rolling。帮你得心应手处理时间序列数据!
阅读全文

摘要:
本文使用『城市酒店和度假酒店的预订信息』,对旅游业的发展现状进行数据分析,包含了完整的数据分析流程:数据读取、数据初览、数据预处理、描述性统计、探索性数据分析、关联分析、相关性分析。
阅读全文

摘要:
本文讲解9种『炫酷高级』的数据图表,可视化地表示比例或百分比:哑铃图、甜甜圈图、华夫饼图、堆积条形图...附上代码,快快用起来吧!
阅读全文

摘要:
Pandas灵活强大,是数据分析必备工具库!但处理大型数据集时,需过渡到PySpark才可以发挥并行计算的优势。本文总结了Pandas与PySpark的核心功能代码段,掌握即可丝滑切换。
阅读全文

摘要:
数据集中的异常值,对于数据分布、建模等都有影响。本文讲解两大类异常值的检测方法及其Python实现:可视化方法(箱线图&直方图)、统计方法(z分数&四分位距)。
阅读全文

摘要:
本文讲解使用Panel、hvPlot等工具库,简单快速地制作可交互的数据仪表板,对180万起野火数据进行空间可视化,更直观地对起火原因、火势大小、持续时长进行单维或多维分析。
阅读全文
