随笔分类 - 深度学习与自然语言处理教程 ◉ 斯坦福CS224n最全笔记
斯坦福CS224n是NLP学习的绝佳课程!ShowMeAI这套笔记也把价值拉满——9篇学习心得+20篇课件要点整理+最全面的资料(视频/课件/作业/项目),带你把这门课彻底学明白!@ShowMeAI研究中心
摘要:
NLP课程第20讲是课程最后一讲,介绍了NLP的兴起历程和发展方向,包括使用未标记数据进行翻译、大模型、GPT-2、QuAC、HotPotQA等。
阅读全文

摘要:
NLP课程第19讲介绍了 NLP 和 AI 偏见产生的原因、衡量和应用,以及通过数据、机器学习技术、多任务学习等减少偏见、促进公平。
阅读全文

摘要:
NLP课程第18讲介绍了基于词向量空间模型的构建、结构反向传播(BTS)及其Python编程、简单TreeRNN及应用、 复杂TreeRNN结构、斯坦福大学HAI研究所等。
阅读全文

摘要:
本文介绍了 NLP 句法分析与树形递归神经网络,主要讲解树形递归神经网络、句法分析 (Constituency Parsing )、Recursive Neural Networks (RNN)、成分句法分析、SU-RNN、MV-RNN、RNTN等。
阅读全文

摘要:
NLP课程第17讲介绍了问答系统(QA)、多任务学习、自然语言处理的十项全能(decaNLP)、多任务问答系统(MQAN)等。
阅读全文

摘要:
NLP课程第16讲介绍了共指消解(指代消解) 的定义、作用和应用、指代检测、指代对模型、指代排序模型 、指代聚类模型 、效果评估等。
阅读全文

摘要:
NLP课程第15讲回顾了NLG要点,介绍了解码算法、NLG任务及其神经网络解法,着手解决NLG评估中的棘手问题,并分析了NLG目前的趋势以及未来的可能方向。
阅读全文

摘要:
NLP课程第14讲介绍了Attention注意力机制、文本生成、自相似度、相对自注意力、图片与音乐生成、迁移学习等。
阅读全文

摘要:
NLP课程第13讲介绍了词向量 (word representations) 知识回顾、ELMo模型、ULMfit模型、Transformer结构和BERT等。
阅读全文

摘要:
NLP课程第12讲介绍了语法学 (linguistics) 基础知识、基于字符粒度的模型、子词模型 (Subword-models)、混合字符与词粒度的模型、fastText模型等。
阅读全文

摘要:
NLP课程第11讲介绍了卷积神经网络 (CNN)及模型细节,并讲解CNN和深度CNN在文本分类中的使用,最后介绍了Q-RNN模型。
阅读全文

摘要:
本文介绍 NLP 中的卷积神经网络(CNN),讲解卷积神经网络的卷积层、池化层、多卷积核、多通道、卷积核、N-gram、filter、k-max pooling、文本分类等。
阅读全文

摘要:
NLP课程第10讲介绍了问答系统动机与历史、SQuAD问答数据集、斯坦福注意力阅读模型、BiDAF模型、近期前沿模型等。
阅读全文

摘要:
本文介绍 NLP 中的问答系统(Question Answering),包括 NLP 中的问答系统场景、动态记忆网络(Dynamic Memory Networks)、问答(QA)、对话、MemNN、DCN、VQA等。
阅读全文

摘要:
NLP课程第9讲介绍了课程大项目的细节、寻找研究主题、项目数据、门控神经序列模型回顾、机器翻译主题、研究方式、结果呈现和评估等。
阅读全文

摘要:
NLP课程第8讲介绍了机器翻译、sequence-to-sequence神经结构及其在机器翻译中的应用,并介绍了注意力机制及其对seq2seq效果的提升。
阅读全文

摘要:
本文介绍了序列到序列模型(seq2seq)及其在翻译系统中的应用,以及注意力机制、序列解码器、神经翻译系统、基于字符级别的翻译模型等。
阅读全文

摘要:
NLP课程第7讲介绍RNNs的梯度消失问题、两种新类型RNN(LSTM和GRU),以及其他梯度消失(爆炸)的解决方案——Gradient clipping、Skip connections等。
阅读全文

摘要:
NLP课程第6讲介绍一个新的NLP任务 Language Modeling (motivate RNNs) ,介绍一个新的神经网络家族 Recurrent Neural Networks (RNNs)。
阅读全文

摘要:
本文介首先介绍了语言模型及其应用场景,进而介绍了循环神经网络(RNN)及优化后的变种LSTM(长短时记忆网络)和GRU模型。
阅读全文
