随笔分类 - 机器学习实战通关指南 ⛵ 全场景覆盖AI解决方案
以『案例+代码』展示机器学习的项目流程与应用细节。实战导向,ML工程师带着你一遍遍深入各个项目的流程节点,直至掌握构建场景建模解决方案&效果调优的核心能力!@ShowMeAI研究中心
摘要:
音乐领域,借助于歌曲相关信息,模型可以根据歌曲的音频和歌词特征,将歌曲精准进行流派分类。本文讲解如何基于机器学习完成对音乐的识别分类。
阅读全文

摘要:
为了让计算机理解、处理和表征非结构化数据,我们通常将其转换为密集向量,而海量向量数据的存储、管理和查询并不简单。本文介绍 Milvus 这个开源向量数据库管理平台的优势、架构和使用案例,了解其在简化『机器学习操作(MLOps)』流程中的应用
阅读全文

摘要:
如何在海量用户中精准预测哪些客户即将流失?本文结合音乐流媒体平台 Sparkify 数据,详细讲解一个客户流失建模预测案例的全流程:探索性数据分析 EDA、数据处理、进一步数据探索、建模优化、结果评估。【代码与数据集亲测可运行】
阅读全文

摘要:
运动穿戴设备(比如小米手环、华为手表、fitbit、Apple Watch)中记录了大量的运动数据,也记录着佩戴者的身体状况。本文结合 Kaggle fitbit 数据集,分析运动规律和卡路里的消耗情况。【代码与数据集亲测可运行】
阅读全文

摘要:
二手车交易越发繁荣的当下,如何科学定价时买卖&平台三方都关心的问题。本文结合汽车价格预测数据集,讲解『二手车价格预估模型』构建和部署的全过程:数据分析处理 & 特征工程、机器学习建模、Web应用开发等。【代码与数据集亲测可运行】
阅读全文

摘要:
本文结合 6000 颗钻石的数据,通过克拉重量、切工、颜色和其他特征等属性来预测钻石价格。这是一个完整的企业级建模案例,包含从探索性数据分析、数据准备、模型选择/训练/调优、模型保存和部署的全流程。案例用到的 PyCaret 和 FastAPI 是非常高效的工具,推荐!【代码与数据集亲测可运行】
阅读全文

摘要:
机器学习建模过程如何提速?本文提供 Intel 针对 Scikit-Learn 工具库做的加速补丁,是一种硬件层面的解决方案,支持多种算法,并可以将建模时间压缩为常规方式的 1/5
阅读全文

摘要:
全自动化机器学习建模!效果吊打初级炼丹师!本文汇总了常见开源库,PyCaret、H2O AutoML、TPOT、Auto-sklearn、FLAML、EvalML、AutoKeras、Auto-ViML、AutoGluon、MLBox,一起用起来吧!
阅读全文

摘要:
机器学习建模高级用法!构建企业级AI建模流水线,不同环节有序地构建成工作流(pipeline)。本文以『客户流失』为例,讲解如何构建 SKLearn 流水线。
阅读全文

摘要:
2022了你还不知道“低代码”?一起看看数据分析、机器学习、深度学习领域最受欢迎的 Python 低代码工具:D-Tale、AutoViz、Lux、Pandas-Profiling、PyCaret、PyTorch Lightning、Hugging Face Transformers。
阅读全文

摘要:
本篇介绍工具库FLAML。FLAML 由 Microsoft Research 开发,适用于AutoML自动化机器学习建模,构建端到端机器学习流程、解决实际场景问题。
阅读全文

摘要:
本篇讲解使用自动化特征工程工具Featuretools,对数据进行自动化特征工程的方法,并借助于BigMart Sales数据集来演示自动化特征工程的相关应用。
阅读全文

摘要:
本篇内容给大家详细讲解了特征工程的知识,包括数据清洗(数据对齐、缺失值处理、异常值处理),特征构建,特征变换,特征选择与实战特征工程经验等内容。
阅读全文

摘要:
本篇内容是Kaggle数据科学竞赛Rossmann store sales解决方案的进阶版本,整体方案包括探索性数据分析、缺失值处理、特征工程、基准模型与评估、XGBoost建模与调优等完整板块。
阅读全文

摘要:
本篇内容基于Kaggle数据科学竞赛Rossmann store sales,梳理和总结基于Python解决电商建模的全过程:包括数据探索分析、数据预处理与特征工程、建模与调优。
阅读全文

摘要:
本篇详细讲解LightGBM的工程应用方法。LightGBM是微软开发的boosting集成模型,和XGBoost一样是对GBDT的优化和高效实现,但它很多方面比XGBoost有着更为优秀的表现。
阅读全文

摘要:
本篇内容详细讲解XGBoost的工程应用方法。XGBoost是一个非常强大的Boosting算法工具包,是很多大厂机器学习方案的模型首选,在并行计算效率、缺失值处理、控制过拟合等能力上都表现非常优秀。
阅读全文

摘要:
本篇内容详解scikit-learn工具库的用法,覆盖机器学习基础知识、SKLearn讲解、SKLearn三大核心API、SKLearn高级API等内容。
阅读全文

摘要:
本篇内容介绍了SKLearn的核心板块,并通过SKLearn自带的数据集,讲解一个典型应用案例。
阅读全文

摘要:
本篇文章详解机器学习应用流程,应用在结构化数据和非结构化数据(图像)上,借助案例重温机器学习基础知识,并学习应用机器学习解决问题的基本流程。
阅读全文
