组合数
从n个元素里取出m个,记C(n,m); 原始公式:C(n,m) = n! / ( m!*(n-m)! )
在编程里,初中高中的阶乘公式已经不太管用了,数据一下子就爆。
公式1:C(n,m) = (n-m+1) * C(n,m-1) / m
用数组存放,从C(n,0)开始存到C(n,m),数组下标表示m的值
#include<iostream> #include<stdio.h> #include<algorithm> using namespace std; long long a[9999999]; int main()///裸题,单纯套公式 { long long n,k,i; while(cin>>n>>k&&(n+k)) { a[0]=1; if(k>n-k) k=n-k; for(i=1;i<=k;i++) a[i]=(n-i+1)*a[i-1]/i; cout<<a[k]<<endl; } return 0; }
公式2:C(n,m) = C(n-1,m) + C(n-1,m-1)
计算较大的组合数,用二维数组存放各个组合数的大小
#include<iostream> #include<stdio.h> #include<algorithm> using namespace std; long long c[101][101]; int main() { for(int i=1;i<101;i++) { c[i][0]=c[0][i]=1; c[i][i]=1; //不用担心下面n和k相等没法进入循环的情况 } for(int n=1;n<101;n++) for(int k=1;k<n;k++)//一直是k<=n;不过等于的情况解决了 c[n][k]=c[n-1][k]+c[n-1][k-1]; int n,k; while(cin>>n>>k&&(n+k)) { printf("%d things taken %d at a time is %d exactly.\n",n,k,c[n][k]); } return 0; }
数据更大,需要求模,一般用鲁卡斯定理:
C(n,m)%p p为素数
总有:m = t*p + rn = s*p + q →
C(n,m)%p = C(s,t)%p * C(q,r)%p →
C(n,m)%p = C(n/p,m/p)%p * C(n%p,m%p)%p
思路:由于树上可以不放豆,C(n+m,m)。数据太大,需要很多防爆措施,快速幂,逆元,阶乘,鲁卡斯定理。
代码:
#include<iostream> #include<stdio.h> #include<algorithm> #define ll long long using namespace std; ll n, m, p; ll fac[1000000+10]={1,1}; ///0和1的阶乘为1 void getfac() ///打印阶乘表 { for(ll i=1;i<=p;i++) ///每次打到p就好 fac[i]=fac[i-1]*i%p; } ll power(ll a,ll b,ll p) ///大数据逆元计算又需要快速幂 { ///a的b次方对p求模 ll ans=1; while(b>0) { if(b%2==1) ans=ans*a%p; b>>=1; a=a*a%p; } return ans%p; } ll C(ll n, ll m ,ll p) { ///C(n,m) = n! / ( m!*(n-m)! ) ///数据太大肯定爆,p又是素数。换成求m!*(n-m)!的逆元,又不能一起求,会爆数据,分开求,看做n!/m! * 1/(n-m)! ///由于是对p求模,n,m范围在阶乘表范围里 if(m>n) return 0; return fac[n]%p * power(fac[m], p-2, p) * power(fac[n-m], p-2, p) % p; } ll lucase(ll n, ll m ) { if(m==0) return 1; else return C(n%p, m%p, p)* lucase(n/p,m/p)%p;/// (n/p),(m/p)不一定比p小,继续用鲁卡斯 } int main() { int t; cin>>t; while(t--) { cin>>n>>m>>p; getfac(); cout<<lucase(n+m,n)<<endl; } return 0; }