02 2019 档案
摘要:在tensorflow1.8之后的版本中,tensorflow.contrib部分都有tensorrt的组件,该组件存在的意义在于,你可以读取pb文件,并调用tensorrt的方法进行subgraph压缩,其他不能压缩的subgraph依然被tensorflow所处理。这样的操作方式就不同于你生成一
阅读全文
摘要:本文来自《BEGAN: Boundary Equilibrium Generative Adversarial Networks》,时间线为2017年3月。是google的工作。 作者提出一个新的均衡执行方法,该方法与从Wasserstein距离导出的loss相结合,用于训练基于自动编码器的GAN。
阅读全文
摘要:本文来自《Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks》,时间线为2017年3月。本文算是GAN的一个很大的应用里程点,其可以用在风格迁移,目标形变,季节变换,相片增强等等。 1 引言
阅读全文
摘要:本文来自《Age Progression/Regression by Conditional Adversarial Autoencoder》,时间线为2017年2月。 该文很有意思,是如何通过当前图片生成你不同年龄时候的样子。 假设给你一张人脸(没有告诉你多少岁)和一堆网上爬取的人脸图像(包含不同
阅读全文
摘要:本文来自《Wasserstein GAN》,时间线为2017年1月,本文可以算得上是GAN发展的一个里程碑文献了,其解决了以往GAN训练困难,结果不稳定等问题。 1 引言 本文主要思考的是半监督学习。当我们说学习概率分布,典型的思维是学习一个概率密度。这通常是通过定义一个概率密度的参数化族$(P_{
阅读全文