一个中转代码,底层调用openai,上层模拟openai

openai的调用api几乎成为了实质性的大模型社区的调用标准,你看不论是阿里的灵积,智谱,together,vllm,ollama,fastchat等都支持openai的调用方式,所以这也是大势所趋,

有时候我们想做个中间层,底层调用大模型,上层提供业务服务,特别是许多公司的多节点的agent,如果我们都保持一致那么统一性就很好了

代码如下,代码不是很精细,个别小细节需要改下,但是整体不影响使用和借鉴:

import time
import json
import asyncio
from typing import List, Optional

import uvicorn
from openai import OpenAI
from fastapi import FastAPI
from pydantic import BaseModel
from starlette.responses import StreamingResponse


app = FastAPI(title="OpenAI-compatible API")

class ChatMessage(BaseModel):
    role: str
    content: str

class ChatCompletionRequest(BaseModel):
    model: str = "mock-gpt-model"
    messages: List[ChatMessage]
    max_tokens: Optional[int] = 512
    temperature: Optional[float] = 0.1
    stream: Optional[bool] = False




class CallOpenAI:
  '''调用底层大模型的部分 '''
  def __init__(self):
    self.client = OpenAI(
             api_key="EMPTY",
             base_url="http://127.0.0.1:9001/v1"
         )

  def invoke(self,messages):

     messages=[{'role':'user','content':messages}]

     completion = self.client.chat.completions.create(
          model='Qwen2-72-gptq-int4',
          messages=messages,
#          temperature = 0.5,
          max_tokens=500,
#          top_p=1.0,
#          presence_penalty=0.0,
#          frequency_penalty = 0.0
          stream=True

      )

     return completion
model = CallOpenAI()


async def _resp_async_generator1(text_resp: str):

   response = model.invoke(text_resp)
   stream_messages = ''

   for chunk in response:
     content = chunk.choices[0].delta.content
     stream_message = content
     if not content:
       stream_message = ''
     stream_messages += stream_message

     chunk = {
          "id": 1,
          "object": "chat.completion.chunk",
          "created": time.time(),
          "model": "blah",
          "choices": [{"delta": {"content": stream_message}}],
      }

     yield f"data: {json.dumps(chunk)}\n\n"
     await asyncio.sleep(0)
   yield "data: [DONE]\n\n"



@app.post("/v1/chat/completions")
async def chat_completions(request: ChatCompletionRequest):

    if request.messages:
      resp_content = "As a mock AI Assitant, I can only echo your last message:" + request.messages[-1].content
    else:
      resp_content = "As a mock AI Assitant, I can only echo your last message, but there wasn't one!"
    resp_content = '请基于春天写一篇1000字的文章'

    if request.stream:
      return StreamingResponse(_resp_async_generator1(resp_content), media_type="application/x-ndjson")

    return {
        "id": "1337",
        "object": "chat.completion",
        "created": time.time(),
        "model": request.model,
        "choices": [{
            "message": ChatMessage(role="assistant", content=resp_content)        }]
    }


if __name__ == '__main__':
    uvicorn.run(app, host="0.0.0.0", port=8000)

拉起如下

写个代码测试下:

from openai import OpenAI

# init client and connect to localhost server
client = OpenAI(
    api_key="fake-api-key",
    base_url="http://localhost:8000/v1/" # change the default port if needed
)

stream = client.chat.completions.create(
    model="mock-gpt-model",
    messages=[{"role": "user", "content": "Say this is a test"}],
    stream=True,
)

for chunk in stream:
    print(chunk.choices[0].delta.content or "",end='',flush=True)

结果如下图进行流式输出

posted @ 2024-06-18 11:36  仙守  阅读(89)  评论(0编辑  收藏  举报