推荐系统中的常用模型(Recall)

Overview

 

模型简介论文
Word2Vec word2vector [NIPS 2013]Distributed Representations of Words and Phrases and their Compositionality
DSSM Deep Structured Semantic Models [CIKM 2013]Learning Deep Structured Semantic Models for Web Search using Clickthrough Data
GRU4REC SR-GRU [2015]Session-based Recommendations with Recurrent Neural Networks
Youtube_DNN Youtube_DNN [RecSys 2016]Deep Neural Networks for YouTube Recommendations
SSR Sequence Semantic Retrieval Model [SIGIR 2016]Multi-Rate Deep Learning for Temporal Recommendation
NCF Neural Collaborative Filtering [WWW 2017]Neural Collaborative Filtering
GNN SR-GNN [AAAI 2019]Session-based Recommendation with Graph Neural Networks
Fasttext fasttext [EACL 2017]Bag of Tricks for Efficient Text Classification

 

 

Youtube_DNN

输入:

1. 用户观看过的video的embedding向量

2. 用户搜索词的embedding向量

3. 用户的地理位置年龄等静态特征

(这里的embedding向量作者是用word2vec类方法预先生成的)

 

线下模型训练阶段:

三层ReLU神经网络之后接到softmax层,即建模为为用户推荐下一个感兴趣视频的多分类问题;

输出:所有候选视频集合上的概率分布。

 

线上预测阶段:

考虑到召回的高性能需求首先通过userId找到相应的用户向量,然后使用KNN类方法找到相似度最高的N条候选结果返回。

 

 

posted @ 2020-09-03 15:41  山竹小果  阅读(836)  评论(0编辑  收藏  举报