4 基于优化的攻击——CW

CW攻击原论文地址——https://arxiv.org/pdf/1608.04644.pdf

1.CW攻击的原理

  CW攻击是一种基于优化的攻击,攻击的名称是两个作者的首字母。首先还是贴出攻击算法的公式表达:

 

 下面解释下算法的大概思想,该算法将对抗样本当成一个变量,那么现在如果要使得攻击成功就要满足两个条件:(1)对抗样本和对应的干净样本应该差距越小越好;(2)对抗样本应该使得模型分类错,且错的那一类的概率越高越好。

  其实上述公式的两部分loss也就是基于这两点而得到的,首先说第一部分,rn对应着干净样本和对抗样本的差,但作者在这里有个小trick,他把对抗样本映射到了tanh空间里面,这样做有什么好处呢?如果不做变换,那么x只能在(0,1)这个范围内变换,做了这个变换 ,x可以在-inf到+inf做变换,有利于优化。

再来说说第二部分,公式中的Z(x)表示的是样本x通过模型未经过softmax的输出向量,对于干净的样本来说,这个这个向量的最大值对应的就是正确的类别(如果分类正确的话),现在我们将类别t(也就是我们最后想要攻击成的类别)所对应的逻辑值记为,将最大的值(对应类别不同于t)记为,如果通过优化使得变小,攻击不就离成功了更近嘛。那么式子中的k是什么呢?k其实就是置信度(confidence),可以理解为,k越大,那么模型分错,且错成的那一类的概率越大。但与此同时,这样的对抗样本就更难找了。最后就是常数c,这是一个超参数,用来权衡两个loss之间的关系,在原论文中,作者使用二分查找来确定c值。

  下面总结一下CW攻击:

  CW是一个基于优化的攻击,主要调节的参数是c和k,看你自己的需要了。它的优点在于,可以调节置信度,生成的扰动小,可以破解很多的防御方法,缺点是,很慢~~~

  最后在说一下,就是在某些防御论文中,它实现CW攻击,是直接用替换PGD中的loss,其余步骤和PGD一模一样。

2.CW代码实现

class CarliniWagnerL2Attack(Attack, LabelMixin):

    def __init__(self, predict, num_classes, confidence=0,
                 targeted=False, learning_rate=0.01,
                 binary_search_steps=9, max_iterations=10000,
                 abort_early=True, initial_const=1e-3,
                 clip_min=0., clip_max=1., loss_fn=None):
        """
        Carlini Wagner L2 Attack implementation in pytorch

        Carlini, Nicholas, and David Wagner. "Towards evaluating the
        robustness of neural networks." 2017 IEEE Symposium on Security and
        Privacy (SP). IEEE, 2017.
        https://arxiv.org/abs/1608.04644

        learning_rate: the learning rate for the attack algorithm
        max_iterations: the maximum number of iterations
        binary_search_steps: number of binary search times to find the optimum
        abort_early: if set to true, abort early if getting stuck in local min
        confidence: confidence of the adversarial examples
        targeted: TODO
        """

        if loss_fn is not None:
            import warnings
            warnings.warn(
                "This Attack currently do not support a different loss"
                " function other than the default. Setting loss_fn manually"
                " is not effective."
            )

        loss_fn = None

        super(CarliniWagnerL2Attack, self).__init__(
            predict, loss_fn, clip_min, clip_max)

        self.learning_rate = learning_rate
        self.max_iterations = max_iterations
        self.binary_search_steps = binary_search_steps
        self.abort_early = abort_early
        self.confidence = confidence
        self.initial_const = initial_const
        self.num_classes = num_classes
        # The last iteration (if we run many steps) repeat the search once.
        self.repeat = binary_search_steps >= REPEAT_STEP
        self.targeted = targeted

    def _loss_fn(self, output, y_onehot, l2distsq, const):
        # TODO: move this out of the class and make this the default loss_fn
        #   after having targeted tests implemented
        real = (y_onehot * output).sum(dim=1)

        # TODO: make loss modular, write a loss class
        other = ((1.0 - y_onehot) * output - (y_onehot * TARGET_MULT)
                 ).max(1)[0]
        # - (y_onehot * TARGET_MULT) is for the true label not to be selected

        if self.targeted:
            loss1 = clamp(other - real + self.confidence, min=0.)
        else:
            loss1 = clamp(real - other + self.confidence, min=0.)
        loss2 = (l2distsq).sum()
        loss1 = torch.sum(const * loss1)
        loss = loss1 + loss2
        return loss

    def _is_successful(self, output, label, is_logits):
        # determine success, see if confidence-adjusted logits give the right
        #   label

        if is_logits:
            output = output.detach().clone()
            if self.targeted:
                output[torch.arange(len(label)), label] -= self.confidence
            else:
                output[torch.arange(len(label)), label] += self.confidence
            pred = torch.argmax(output, dim=1)
        else:
            pred = output
            if pred == INVALID_LABEL:
                return pred.new_zeros(pred.shape).byte()

        return is_successful(pred, label, self.targeted)


    def _forward_and_update_delta(
            self, optimizer, x_atanh, delta, y_onehot, loss_coeffs):

        optimizer.zero_grad()
        adv = tanh_rescale(delta + x_atanh, self.clip_min, self.clip_max)
        transimgs_rescale = tanh_rescale(x_atanh, self.clip_min, self.clip_max)
        output = self.predict(adv)
        l2distsq = calc_l2distsq(adv, transimgs_rescale)
        loss = self._loss_fn(output, y_onehot, l2distsq, loss_coeffs)
        loss.backward()
        optimizer.step()

        return loss.item(), l2distsq.data, output.data, adv.data


    def _get_arctanh_x(self, x):
        result = clamp((x - self.clip_min) / (self.clip_max - self.clip_min),
                       min=self.clip_min, max=self.clip_max) * 2 - 1
        return torch_arctanh(result * ONE_MINUS_EPS)

    def _update_if_smaller_dist_succeed(
            self, adv_img, labs, output, l2distsq, batch_size,
            cur_l2distsqs, cur_labels,
            final_l2distsqs, final_labels, final_advs):

        target_label = labs
        output_logits = output
        _, output_label = torch.max(output_logits, 1)

        mask = (l2distsq < cur_l2distsqs) & self._is_successful(
            output_logits, target_label, True)

        cur_l2distsqs[mask] = l2distsq[mask]  # redundant
        cur_labels[mask] = output_label[mask]

        mask = (l2distsq < final_l2distsqs) & self._is_successful(
            output_logits, target_label, True)
        final_l2distsqs[mask] = l2distsq[mask]
        final_labels[mask] = output_label[mask]
        final_advs[mask] = adv_img[mask]

    def _update_loss_coeffs(
            self, labs, cur_labels, batch_size, loss_coeffs,
            coeff_upper_bound, coeff_lower_bound):

        # TODO: remove for loop, not significant, since only called during each
        # binary search step
        for ii in range(batch_size):
            cur_labels[ii] = int(cur_labels[ii])
            if self._is_successful(cur_labels[ii], labs[ii], False):
                coeff_upper_bound[ii] = min(
                    coeff_upper_bound[ii], loss_coeffs[ii])

                if coeff_upper_bound[ii] < UPPER_CHECK:
                    loss_coeffs[ii] = (
                        coeff_lower_bound[ii] + coeff_upper_bound[ii]) / 2
            else:
                coeff_lower_bound[ii] = max(
                    coeff_lower_bound[ii], loss_coeffs[ii])
                if coeff_upper_bound[ii] < UPPER_CHECK:
                    loss_coeffs[ii] = (
                        coeff_lower_bound[ii] + coeff_upper_bound[ii]) / 2
                else:
                    loss_coeffs[ii] *= 10


    def perturb(self, x, y=None):
        x, y = self._verify_and_process_inputs(x, y)

        # Initialization
        if y is None:
            y = self._get_predicted_label(x)
        x = replicate_input(x)
        batch_size = len(x)
        coeff_lower_bound = x.new_zeros(batch_size)
        coeff_upper_bound = x.new_ones(batch_size) * CARLINI_COEFF_UPPER
        loss_coeffs = torch.ones_like(y).float() * self.initial_const
        final_l2distsqs = [CARLINI_L2DIST_UPPER] * batch_size
        final_labels = [INVALID_LABEL] * batch_size
        final_advs = x
        x_atanh = self._get_arctanh_x(x)
        y_onehot = to_one_hot(y, self.num_classes).float()

        final_l2distsqs = torch.FloatTensor(final_l2distsqs).to(x.device)
        final_labels = torch.LongTensor(final_labels).to(x.device)

        # Start binary search
        for outer_step in range(self.binary_search_steps):
            delta = nn.Parameter(torch.zeros_like(x))
            optimizer = optim.Adam([delta], lr=self.learning_rate)
            cur_l2distsqs = [CARLINI_L2DIST_UPPER] * batch_size
            cur_labels = [INVALID_LABEL] * batch_size
            cur_l2distsqs = torch.FloatTensor(cur_l2distsqs).to(x.device)
            cur_labels = torch.LongTensor(cur_labels).to(x.device)
            prevloss = PREV_LOSS_INIT

            if (self.repeat and outer_step == (self.binary_search_steps - 1)):
                loss_coeffs = coeff_upper_bound
            for ii in range(self.max_iterations):
                loss, l2distsq, output, adv_img = \
                    self._forward_and_update_delta(
                        optimizer, x_atanh, delta, y_onehot, loss_coeffs)
                if self.abort_early:
                    if ii % (self.max_iterations // NUM_CHECKS or 1) == 0:
                        if loss > prevloss * ONE_MINUS_EPS:
                            break
                        prevloss = loss

                self._update_if_smaller_dist_succeed(
                    adv_img, y, output, l2distsq, batch_size,
                    cur_l2distsqs, cur_labels,
                    final_l2distsqs, final_labels, final_advs)

            self._update_loss_coeffs(
                y, cur_labels, batch_size,
                loss_coeffs, coeff_upper_bound, coeff_lower_bound)

        return final_advs

  

posted @ 2019-07-31 13:09  山竹小果  阅读(3057)  评论(0编辑  收藏  举报