4 基于优化的攻击——CW
CW攻击原论文地址——https://arxiv.org/pdf/1608.04644.pdf
1.CW攻击的原理
CW攻击是一种基于优化的攻击,攻击的名称是两个作者的首字母。首先还是贴出攻击算法的公式表达:
下面解释下算法的大概思想,该算法将对抗样本当成一个变量,那么现在如果要使得攻击成功就要满足两个条件:(1)对抗样本和对应的干净样本应该差距越小越好;(2)对抗样本应该使得模型分类错,且错的那一类的概率越高越好。
其实上述公式的两部分loss也就是基于这两点而得到的,首先说第一部分,rn对应着干净样本和对抗样本的差,但作者在这里有个小trick,他把对抗样本映射到了tanh空间里面,这样做有什么好处呢?如果不做变换,那么x只能在(0,1)这个范围内变换,做了这个变换 ,x可以在-inf到+inf做变换,有利于优化。
再来说说第二部分,公式中的Z(x)表示的是样本x通过模型未经过softmax的输出向量,对于干净的样本来说,这个这个向量的最大值对应的就是正确的类别(如果分类正确的话),现在我们将类别t(也就是我们最后想要攻击成的类别)所对应的逻辑值记为,将最大的值(对应类别不同于t)记为,如果通过优化使得变小,攻击不就离成功了更近嘛。那么式子中的k是什么呢?k其实就是置信度(confidence),可以理解为,k越大,那么模型分错,且错成的那一类的概率越大。但与此同时,这样的对抗样本就更难找了。最后就是常数c,这是一个超参数,用来权衡两个loss之间的关系,在原论文中,作者使用二分查找来确定c值。
下面总结一下CW攻击:
CW是一个基于优化的攻击,主要调节的参数是c和k,看你自己的需要了。它的优点在于,可以调节置信度,生成的扰动小,可以破解很多的防御方法,缺点是,很慢~~~
最后在说一下,就是在某些防御论文中,它实现CW攻击,是直接用替换PGD中的loss,其余步骤和PGD一模一样。
2.CW代码实现
class CarliniWagnerL2Attack(Attack, LabelMixin): def __init__(self, predict, num_classes, confidence=0, targeted=False, learning_rate=0.01, binary_search_steps=9, max_iterations=10000, abort_early=True, initial_const=1e-3, clip_min=0., clip_max=1., loss_fn=None): """ Carlini Wagner L2 Attack implementation in pytorch Carlini, Nicholas, and David Wagner. "Towards evaluating the robustness of neural networks." 2017 IEEE Symposium on Security and Privacy (SP). IEEE, 2017. https://arxiv.org/abs/1608.04644 learning_rate: the learning rate for the attack algorithm max_iterations: the maximum number of iterations binary_search_steps: number of binary search times to find the optimum abort_early: if set to true, abort early if getting stuck in local min confidence: confidence of the adversarial examples targeted: TODO """ if loss_fn is not None: import warnings warnings.warn( "This Attack currently do not support a different loss" " function other than the default. Setting loss_fn manually" " is not effective." ) loss_fn = None super(CarliniWagnerL2Attack, self).__init__( predict, loss_fn, clip_min, clip_max) self.learning_rate = learning_rate self.max_iterations = max_iterations self.binary_search_steps = binary_search_steps self.abort_early = abort_early self.confidence = confidence self.initial_const = initial_const self.num_classes = num_classes # The last iteration (if we run many steps) repeat the search once. self.repeat = binary_search_steps >= REPEAT_STEP self.targeted = targeted def _loss_fn(self, output, y_onehot, l2distsq, const): # TODO: move this out of the class and make this the default loss_fn # after having targeted tests implemented real = (y_onehot * output).sum(dim=1) # TODO: make loss modular, write a loss class other = ((1.0 - y_onehot) * output - (y_onehot * TARGET_MULT) ).max(1)[0] # - (y_onehot * TARGET_MULT) is for the true label not to be selected if self.targeted: loss1 = clamp(other - real + self.confidence, min=0.) else: loss1 = clamp(real - other + self.confidence, min=0.) loss2 = (l2distsq).sum() loss1 = torch.sum(const * loss1) loss = loss1 + loss2 return loss def _is_successful(self, output, label, is_logits): # determine success, see if confidence-adjusted logits give the right # label if is_logits: output = output.detach().clone() if self.targeted: output[torch.arange(len(label)), label] -= self.confidence else: output[torch.arange(len(label)), label] += self.confidence pred = torch.argmax(output, dim=1) else: pred = output if pred == INVALID_LABEL: return pred.new_zeros(pred.shape).byte() return is_successful(pred, label, self.targeted) def _forward_and_update_delta( self, optimizer, x_atanh, delta, y_onehot, loss_coeffs): optimizer.zero_grad() adv = tanh_rescale(delta + x_atanh, self.clip_min, self.clip_max) transimgs_rescale = tanh_rescale(x_atanh, self.clip_min, self.clip_max) output = self.predict(adv) l2distsq = calc_l2distsq(adv, transimgs_rescale) loss = self._loss_fn(output, y_onehot, l2distsq, loss_coeffs) loss.backward() optimizer.step() return loss.item(), l2distsq.data, output.data, adv.data def _get_arctanh_x(self, x): result = clamp((x - self.clip_min) / (self.clip_max - self.clip_min), min=self.clip_min, max=self.clip_max) * 2 - 1 return torch_arctanh(result * ONE_MINUS_EPS) def _update_if_smaller_dist_succeed( self, adv_img, labs, output, l2distsq, batch_size, cur_l2distsqs, cur_labels, final_l2distsqs, final_labels, final_advs): target_label = labs output_logits = output _, output_label = torch.max(output_logits, 1) mask = (l2distsq < cur_l2distsqs) & self._is_successful( output_logits, target_label, True) cur_l2distsqs[mask] = l2distsq[mask] # redundant cur_labels[mask] = output_label[mask] mask = (l2distsq < final_l2distsqs) & self._is_successful( output_logits, target_label, True) final_l2distsqs[mask] = l2distsq[mask] final_labels[mask] = output_label[mask] final_advs[mask] = adv_img[mask] def _update_loss_coeffs( self, labs, cur_labels, batch_size, loss_coeffs, coeff_upper_bound, coeff_lower_bound): # TODO: remove for loop, not significant, since only called during each # binary search step for ii in range(batch_size): cur_labels[ii] = int(cur_labels[ii]) if self._is_successful(cur_labels[ii], labs[ii], False): coeff_upper_bound[ii] = min( coeff_upper_bound[ii], loss_coeffs[ii]) if coeff_upper_bound[ii] < UPPER_CHECK: loss_coeffs[ii] = ( coeff_lower_bound[ii] + coeff_upper_bound[ii]) / 2 else: coeff_lower_bound[ii] = max( coeff_lower_bound[ii], loss_coeffs[ii]) if coeff_upper_bound[ii] < UPPER_CHECK: loss_coeffs[ii] = ( coeff_lower_bound[ii] + coeff_upper_bound[ii]) / 2 else: loss_coeffs[ii] *= 10 def perturb(self, x, y=None): x, y = self._verify_and_process_inputs(x, y) # Initialization if y is None: y = self._get_predicted_label(x) x = replicate_input(x) batch_size = len(x) coeff_lower_bound = x.new_zeros(batch_size) coeff_upper_bound = x.new_ones(batch_size) * CARLINI_COEFF_UPPER loss_coeffs = torch.ones_like(y).float() * self.initial_const final_l2distsqs = [CARLINI_L2DIST_UPPER] * batch_size final_labels = [INVALID_LABEL] * batch_size final_advs = x x_atanh = self._get_arctanh_x(x) y_onehot = to_one_hot(y, self.num_classes).float() final_l2distsqs = torch.FloatTensor(final_l2distsqs).to(x.device) final_labels = torch.LongTensor(final_labels).to(x.device) # Start binary search for outer_step in range(self.binary_search_steps): delta = nn.Parameter(torch.zeros_like(x)) optimizer = optim.Adam([delta], lr=self.learning_rate) cur_l2distsqs = [CARLINI_L2DIST_UPPER] * batch_size cur_labels = [INVALID_LABEL] * batch_size cur_l2distsqs = torch.FloatTensor(cur_l2distsqs).to(x.device) cur_labels = torch.LongTensor(cur_labels).to(x.device) prevloss = PREV_LOSS_INIT if (self.repeat and outer_step == (self.binary_search_steps - 1)): loss_coeffs = coeff_upper_bound for ii in range(self.max_iterations): loss, l2distsq, output, adv_img = \ self._forward_and_update_delta( optimizer, x_atanh, delta, y_onehot, loss_coeffs) if self.abort_early: if ii % (self.max_iterations // NUM_CHECKS or 1) == 0: if loss > prevloss * ONE_MINUS_EPS: break prevloss = loss self._update_if_smaller_dist_succeed( adv_img, y, output, l2distsq, batch_size, cur_l2distsqs, cur_labels, final_l2distsqs, final_labels, final_advs) self._update_loss_coeffs( y, cur_labels, batch_size, loss_coeffs, coeff_upper_bound, coeff_lower_bound) return final_advs