【SCOI2010】股票交易
Description
在T天时间内,第\(i\)天股票购入价为\(ap_i\),出售价为\(bp_i\),每天最多购入\(as_i\)股,最多出售\(bs_i\)股
任意时刻手中的股票数不能超过\(Maxp\),且两次交易至少间隔\(W\)天
最大化收益,初始资金视为无限大
Solution
单调队列+dp
根据题意不难设计状态,定义\(f[i][j]\)表示前\(i\)天,手里最后有\(j\)个股票的最大收益,那么状态转移方程就是:
\[f[i][j]=
\begin{cases}
f[i-1][j] \\
f[i-w-1][k]-ap[i]*(j-k) & k\in[j-as[i],j)\\
f[i-w-1][k]+bp[i]*(k-j) & k\in(j,j+bs[i]]
\end{cases}
\]
以第二个式子为例,我们可以变形得到\(f[i][j]=f[i-w-1][k]+ap[i]*k-ap[i]*j\)
这个式子符合单调队列的一般形式,所以我们可以用单调队列进行优化
第三个式子同理
时间复杂度为\(O(TMaxp)\)
Code
#include <bits/stdc++.h>
// check if it is judged online
namespace shl {
typedef long long ll;
inline int read() {
int ret = 0, op = 1;
char c = getchar();
while (!isdigit(c)) {
if (c == '-') op = -1;
c = getchar();
}
while (isdigit(c)) {
ret = ret * 10 + c - '0';
c = getchar();
}
return ret * op;
}
const int N = 2010;
int n, m, w;
int as[N], bs[N], ap[N], bp[N];
int head, tail, que[N];
int f[N][N];
inline int calca(int i, int ww, int k) {
return f[i - ww - 1][k] + ap[i] * k;
}
inline int calcb(int i, int ww, int k) {
return f[i - ww - 1][k] + bp[i] * k;
}
using std::max;
int main() {
n = read(), m = read(), w = read();
for (register int i = 1; i <= n; ++i) {
ap[i] = read(), bp[i] = read(), as[i] = read(), bs[i] = read();
}
memset(f, -0x7f, sizeof(f));
for (register int i = 0; i <= n; ++i) f[i][0] = 0;
for (register int i = 1; i <= n; ++i) {
for (register int j = 0; j <= as[i]; ++j) f[i][j] = -ap[i] * j;
for (register int j = m; j >= 0; --j) f[i][j] = max(f[i][j], f[i - 1][j]);
if (i - w - 1 < 0) continue ;
head = 1, tail = 0;
for (register int j = 0; j <= m; ++j) {
while (head <= tail && que[head] < j - as[i]) head++;
while (head <= tail && calca(i, w, j) >= calca(i, w, que[tail])) tail--;
que[++tail] = j;
if (head <= tail) f[i][j] = max(f[i][j], calca(i, w, que[head]) - j * ap[i]);
}
head = 1, tail = 0;
for (register int j = m; j >= 0; --j) {
while (head <= tail && que[head] > j + bs[i]) head++;
while (head <= tail && calcb(i, w, j) >= calcb(i, w, que[tail])) tail--;
que[++tail] = j;
if (head <= tail) f[i][j] = max(f[i][j], calcb(i, w, que[head]) - j * bp[i]);
}
}
int ans = 0;
for (register int i = 0; i <= m; ++i) ans = max(ans, f[n][i]);
printf("%d\n", ans);
return 0;
}
}
int main() {
#ifdef LOCAL
freopen("textname.in", "r", stdin);
freopen("textname.out", "w", stdout);
#endif
shl::main();
return 0;
}