【CF1207F】Remainder Problem
Description
给定一个序列,支持如下操作:
- 将$x$位置的值加上$y$
- 求出$\sum\limits_{i\ mod\ x= y}{a_i}$的值
Solution
类似于分块的思路
可以肯定,$O(n^2)$肯定是T飞了
我们假设以T为界,预处理出模数小于T的答案,查询时如果模数小于T就直接返回,时间复杂度为$O(T)$
如果模数大于T就暴力计算,时间复杂度为$O(N/T)$
显然,当$T=\sqrt{N}$时这两个复杂度相等。
所以总的复杂度为$O(m\sqrt{N})$
Code
#include <bits/stdc++.h> namespace shl { typedef long long ll; const int N = 5e5 + 10; int a[N], ans[800][800]; int n, m; inline int read() { int ret = 0, op = 1; char c = getchar(); while (!isdigit(c)) { if (c == '-') op = -1; c = getchar(); } while (isdigit(c)) { ret = (ret << 3) + (ret << 1) + c - '0'; c = getchar(); } return ret * op; } int main() { n = 500000; m = read(); int size = sqrt(n); while (m--) { int op; int x, y; std :: cin >> op; x = read(), y = read(); if (op == 2) { if (x <= size) printf("%d\n", ans[x][y]); else { int sum = 0; for (register int i = y; i <= n; i += x) sum += a[i]; printf("%d\n", sum); } } else { for (register int i = 1; i <= size; ++i) ans[i][x % i] += y; a[x] += y; } } return 0; } } int main() { shl :: main(); return 0; }