【NOIP2018】保卫王国

Description

给定一棵树,求它的最小点权覆盖集,其中允许强制某个点选或不选

Solution

ddp用LCT维护

明确一个关系式:最小点权覆盖集=全集-最大点权独立集

那么n≤2000的暴力就很简单了,暴力修改,然后求最大点权独立集就好了(我在考场上就是这么写的)

关于正解,我采用的是动态dp(动态dp的题解点这里

根据上面的式子,我们用动态dp维护最大点权独立集,然后用全集减去就好了

然后我们考虑强制选点的限制

如果强制一个点选,那么我们将这个点的点权加上负无穷

如果强制不选,那么我们将这个点的点权加上正无穷,然后全集加上正无穷就好了

记得每次操作后要还原现场

时间复杂度是$O(mlogn)$

Code

  1 #include <bits/stdc++.h>
  2 using namespace std;
  3 typedef long long ll;
  4 const int N = 1e5 + 10;
  5 const ll INF = 1ll << 40;
  6 inline int read() {
  7     int ret = 0, op = 1;
  8     char c = getchar();
  9     while (!isdigit(c)) {
 10         if (c == '-') op = -1; 
 11         c = getchar();
 12     }
 13     while (isdigit(c)) {
 14         ret = (ret << 3) + (ret << 1) + c - '0';
 15         c = getchar();
 16     }
 17     return ret * op;
 18 }
 19 struct Edge {
 20     int nxt, to;
 21 } e[N << 1];
 22 int num, head[N];
 23 struct Matrix {
 24     ll m[2][2];
 25     Matrix() {
 26         m[0][0] = m[0][1] = m[1][0] = m[1][1] = -INF;
 27     }
 28     inline ll getans() {
 29         return max(m[0][0], m[1][0]);
 30     }
 31     inline void build(ll x, ll y) {
 32         m[0][0] = m[0][1] = x;
 33         m[1][0] = y; m[1][1] = -INF;
 34     }
 35     Matrix operator *(const Matrix &x) const {
 36         Matrix ret;
 37         for (register int i = 0; i < 2; ++i)
 38             for (register int j = 0; j < 2; ++j)
 39                 for (register int k = 0; k < 2; ++k)
 40                     ret.m[i][j] = max(ret.m[i][j], m[i][k] + x.m[k][j]);
 41         return ret;
 42     }
 43 };
 44 struct LCT {
 45     int fa, ch[2];
 46     ll f[2];
 47     Matrix x;
 48 } a[N];
 49 int n, m, val[N];
 50 ll sum;
 51 string s;
 52 inline void add(int from, int to) {
 53     e[++num].nxt = head[from];
 54     e[num].to = to;
 55     head[from] = num;
 56 }
 57 void dfs(int now, int fa) {
 58     a[now].f[1] = val[now];
 59     for (register int i = head[now]; i; i = e[i].nxt) {
 60         int to = e[i].to;
 61         if (to == fa) continue ;
 62         a[to].fa = now;
 63         dfs(to, now);
 64         a[now].f[0] += max(a[to].f[1], a[to].f[0]);
 65         a[now].f[1] += a[to].f[0];
 66     }
 67     a[now].x.build(a[now].f[0], a[now].f[1]);
 68 }
 69 inline void update(int now) {
 70     a[now].x.build(a[now].f[0], a[now].f[1]);
 71     if (a[now].ch[0]) a[now].x = a[a[now].ch[0]].x * a[now].x; 
 72     if (a[now].ch[1]) a[now].x = a[now].x * a[a[now].ch[1]].x;
 73 }    
 74 inline int isnroot(int now) {
 75     return a[a[now].fa].ch[0] == now || a[a[now].fa].ch[1] == now;
 76 }
 77 inline void rotate(int x) {
 78     int y = a[x].fa;
 79     int z = a[y].fa;
 80     int xson = a[y].ch[1] == x;
 81     int yson = a[z].ch[1] == y;
 82     int B = a[x].ch[xson ^ 1];
 83     if (isnroot(y)) a[z].ch[yson] = x;
 84     a[y].ch[xson] = B;
 85     a[x].ch[xson ^ 1] = y;
 86     if (B) a[B].fa = y;
 87     a[y].fa = x;
 88     a[x].fa = z;
 89     update(y); update(x); 
 90 }
 91 void splay(int x) {
 92     while (isnroot(x)) {
 93         int y = a[x].fa;
 94         int z = a[y].fa;
 95         if (isnroot(y)) 
 96             (a[y].ch[0] == x) ^ (a[z].ch[0] == y) ? rotate(x) : rotate(y);
 97         rotate(x); 
 98     }
 99     update(x);
100 }
101 void access(int x) {
102     for (register int y = 0; x; y = x, x = a[x].fa) {
103         splay(x);
104         if (a[x].ch[1]) {
105             a[x].f[0] += a[a[x].ch[1]].x.getans();
106             a[x].f[1] += a[a[x].ch[1]].x.m[0][0];
107         }
108         if (y) {
109             a[x].f[0] -= a[y].x.getans();
110             a[x].f[1] -= a[y].x.m[0][0];            
111         }
112         a[x].ch[1] = y;
113         update(x);
114     }
115 }
116 void change(int x, ll y) {
117     access(x); splay(x);
118     a[x].f[1] += y;
119     update(x);
120 }
121 void solve(int x, int op1, int y, int op2) {
122     change(x, op1 ? -INF : INF);
123     change(y, op2 ? -INF : INF);
124     splay(1);
125     sum += ((op1 ^ 1) + (op2 ^ 1)) * INF;
126     ll ans = sum - a[1].x.getans();
127     change(x, op1 ? INF : -INF);
128     change(y, op2 ? INF : -INF);    
129     sum -= ((op1 ^ 1) + (op2 ^ 1)) * INF;
130     if (ans > INF) puts("-1");
131     else printf("%lld\n", ans);
132 }
133 int main() {
134     n = read(); m = read(); cin >> s;
135     for (register int i = 1; i <= n; ++i) {
136         val[i] = read();
137         sum += val[i];
138     }
139     for (register int i = 1; i < n; ++i) {
140         int x = read(), y = read();
141         add(x, y); add(y, x);
142     }
143     dfs(1, 0);
144     while (m--) {
145         int x = read(), op1 = read(), y = read(), op2 = read();
146         solve(x, op1, y, op2);
147     }
148     return 0;
149 }
AC Code

 

posted @ 2019-08-17 11:20  AD_shl  阅读(329)  评论(0编辑  收藏  举报