【清华集训2012】模积和
Description
给定n,m,求 $\sum\limits_{i=1}^{n} \! \sum\limits_{j=1}^m[i\neq j](n\ mod \ i)(m \ mod \ j)\mod 19940417$的值
Solution
我们先求出$\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}(n\ mod\ i)(m\ mod\ j)$的值,然后运用容斥原理排除i=j的情况即可。
$$ans=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}(n\ mod\ i)(m\ mod\ j)-\sum\limits_{i=1}^{min(n,m)}(n\ mod\ i)(m\ mod\ i)$$
$$=\sum\limits_{i=1}^{n}\sum\limits_{j=1}^{m}(n-\lfloor\frac{n}{i}\rfloor i)(m-\lfloor\frac{m}{j}\rfloor j)-\sum\limits_{i=1}^{min(n,m)}(n-\lfloor\frac{n}{i}\rfloor i)(m-\lfloor\frac{m}{i}\rfloor i)$$
$$=\sum\limits_{i=1}^{n}(n-\lfloor\frac{n}{i}\rfloor i)\sum\limits_{j=1}^{m}(m-\lfloor\frac{m}{j}\rfloor j)-\sum\limits_{i=1}^{min(n,m)}(nm+\lfloor\frac{n}{i}\rfloor\lfloor\frac{m}{i}\rfloor i^2-(m\lfloor\frac{n}{i}\rfloor+n\lfloor\frac{m}{i}\rfloor)i)$$
另外,本题中我们需要一个引理:$\sum\limits_{i=1}^{n}{i^2}=\frac{n(n+1)(2n+1)}{6}$
这样,我们预处理6的乘法逆元,然后根据上述推导用整除分块计算即可
Code
![](https://images.cnblogs.com/OutliningIndicators/ContractedBlock.gif)
1 #include <bits/stdc++.h> 2 using namespace std; 3 typedef unsigned long long ll; 4 ll n, m; 5 const ll mod = 19940417; 6 inline ll sum1(ll x, ll y) { 7 return (x + y) * (y - x + 1) / 2 % mod; 8 } 9 inline ll sum2(ll x) { 10 return (x * (x + 1)) % mod * (x + x + 1) % mod * 3323403 % mod; 11 } 12 ll calc(ll x) { 13 ll ret = 0; 14 for (register ll l = 1, r; l <= x; l = r + 1) { 15 r = x / (x / l); 16 ret = (ret + (r - l + 1) * x % mod - (x / l) * sum1(l, r) % mod + mod) % mod; 17 } 18 return ret; 19 } 20 int main() { 21 scanf("%lld%lld", &n, &m); 22 ll ans = 0; 23 ans = calc(n) * calc(m) % mod; 24 for (register ll l = 1, r; l <= min(n, m); l = r + 1) { 25 r = min(n / (n / l), m / (m / l)); 26 ll s1 = (n * m % mod * (r - l + 1)) % mod; 27 ll s2 = (n / l) * (m / l) % mod * (sum2(r) - sum2(l - 1) + mod) % mod; 28 ll s3 = (n / l * m % mod + m / l * n % mod) * sum1(l, r) % mod; 29 ans = (ans - (s1 + s2 - s3 + mod) % mod + mod) % mod; 30 } 31 printf("%lld\n", ans % mod); 32 return 0; 33 }