阅读翻译Mathematics for Machine Learning之2.5 Linear Independence
阅读翻译Mathematics for Machine Learning之2.5 Linear Independence
关于:
- 首次发表日期:2024-07-18
- Mathematics for Machine Learning官方链接: https://mml-book.com
- ChatGPT和KIMI机翻,人工润色
- 非数学专业,如有错误,请不吝指出
2.5 线性无关( Linear Independence)
接下来,我们将仔细看看如何操作向量(向量空间的元素)。特别是,我们可以将向量相加并用标量相乘。闭合性(closure property)保证了我们最终得到的还是同一向量空间中的另一个向量。我们可以找到一组(set)向量,通过相加和缩放这些向量,我们可以表示向量空间中的每一个向量。这组向量称为基(base),我们将在第2.6.1节讨论它们。在此之前,我们需要介绍线性组合和线性无关的概念。
定义 2.11(线性组合)。考虑一个向量空间
其中
零向量
定义 2.12(线性(不)相关性)。让我们考虑一个向量空间
线性无关是线性代数中最重要的概念之一。直观上,一组线性无关的向量由没有冗余的向量组成,即,如果我们从集合中移除任何一个向量,我们将失去一些东西。在接下来的章节中,我们将更正式地讨论这一直觉。
注释 以下性质对于判断向量是否线性无关是有用的:
-
个向量要么线性相关,要么线性无关,没有第三种可能。 -
如果向量
中至少有一个是零向量 ,那么它们是线性相关的。如果有两个向量相同,也成立。 -
向量
是线性相关的,当且仅当(至少)其中一个是其他向量的线性组合。特别地,如果一个向量是另一个向量的倍数,即 ,那么集合 是线性相关的。 -
检查向量
是否线性无关的一种实用方法是使用高斯消元法:将所有向量作为矩阵 的列,并进行高斯消元,直到矩阵处于行阶梯形态(这里不需要行简化阶梯形态(reduced row-echelon form)):- 枢轴列(pivot columns)表示与其左边的向量线性无关的向量。注意,在构建矩阵时向量是有顺序的。
- 非枢轴列可以表示为左边枢轴列的线性组合。例如,行阶梯形态
告诉我们第一列和第三列是枢轴列。第二列是非枢轴列,因为它是第一列的三倍。
所有列向量是线性无关的当且仅当所有列都是枢轴列。如果至少有一个非枢轴列,则这些列(因此,相应的向量)是线性相关的。
注释 考虑一个向量空间
定义
我们想要检验
这意味着当且仅当列向量
注释:在一个向量空间
【推荐】国内首个AI IDE,深度理解中文开发场景,立即下载体验Trae
【推荐】编程新体验,更懂你的AI,立即体验豆包MarsCode编程助手
【推荐】抖音旗下AI助手豆包,你的智能百科全书,全免费不限次数
【推荐】轻量又高性能的 SSH 工具 IShell:AI 加持,快人一步
· winform 绘制太阳,地球,月球 运作规律
· 震惊!C++程序真的从main开始吗?99%的程序员都答错了
· AI与.NET技术实操系列(五):向量存储与相似性搜索在 .NET 中的实现
· 【硬核科普】Trae如何「偷看」你的代码?零基础破解AI编程运行原理
· 超详细:普通电脑也行Windows部署deepseek R1训练数据并当服务器共享给他人