阅读翻译Mathematics for Machine Learning之2.5 Linear Independence
阅读翻译Mathematics for Machine Learning之2.5 Linear Independence
关于:
- 首次发表日期:2024-07-18
- Mathematics for Machine Learning官方链接: https://mml-book.com
- ChatGPT和KIMI机翻,人工润色
- 非数学专业,如有错误,请不吝指出
2.5 线性无关( Linear Independence)
接下来,我们将仔细看看如何操作向量(向量空间的元素)。特别是,我们可以将向量相加并用标量相乘。闭合性(closure property)保证了我们最终得到的还是同一向量空间中的另一个向量。我们可以找到一组(set)向量,通过相加和缩放这些向量,我们可以表示向量空间中的每一个向量。这组向量称为基(base),我们将在第2.6.1节讨论它们。在此之前,我们需要介绍线性组合和线性无关的概念。
定义 2.11(线性组合)。考虑一个向量空间 \(V\) 和有限数量的向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k \in V\)。那么,每一个 \(\boldsymbol{v} \in V\) 形式如下的向量
其中 \(\lambda_1, \ldots, \lambda_k \in \mathbb{R}\) 是向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 的线性组合。
零向量 \(\mathbf{0}\) 总是可以写成 \(k\) 个向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 的线性组合,因为 \(\mathbf{0}=\sum_{i=1}^k 0 \boldsymbol{x}_i\) 总是成立的。接下来,我们对一组向量的非平凡(non-trivial)线性组合表示 \(\mathbf{0}\) 感兴趣,即向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 的线性组合,其中不是所有系数 \(\lambda_i\) 在 (2.65) 中都为 0。
定义 2.12(线性(不)相关性)。让我们考虑一个向量空间 \(V\) 以及 \(k \in \mathbb{N}\) 和 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k \in V\)。如果存在一个非平凡的线性组合,使得 \(\mathbf{0}=\sum_{i=1}^k \lambda_i \boldsymbol{x}_i\) 且至少有一个 \(\lambda_i \neq 0\),则向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 是线性相关的。如果只存在零解,即 \(\lambda_1=\ldots=\lambda_k=0\),则向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 是线性无关的。
线性无关是线性代数中最重要的概念之一。直观上,一组线性无关的向量由没有冗余的向量组成,即,如果我们从集合中移除任何一个向量,我们将失去一些东西。在接下来的章节中,我们将更正式地讨论这一直觉。
注释 以下性质对于判断向量是否线性无关是有用的:
-
\(k\) 个向量要么线性相关,要么线性无关,没有第三种可能。
-
如果向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 中至少有一个是零向量 \(\mathbf{0}\),那么它们是线性相关的。如果有两个向量相同,也成立。
-
向量 \(\left\{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k : \boldsymbol{x}_i \neq \mathbf{0}, i=1, \ldots, k\right\}, k \geqslant 2\) 是线性相关的,当且仅当(至少)其中一个是其他向量的线性组合。特别地,如果一个向量是另一个向量的倍数,即 \(\boldsymbol{x}_i=\lambda \boldsymbol{x}_j, \lambda \in \mathbb{R}\),那么集合 \(\left\{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k : \boldsymbol{x}_i \neq \mathbf{0}, i=1, \ldots, k\right\}\) 是线性相关的。
-
检查向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k \in V\) 是否线性无关的一种实用方法是使用高斯消元法:将所有向量作为矩阵 \(\boldsymbol{A}\) 的列,并进行高斯消元,直到矩阵处于行阶梯形态(这里不需要行简化阶梯形态(reduced row-echelon form)):
- 枢轴列(pivot columns)表示与其左边的向量线性无关的向量。注意,在构建矩阵时向量是有顺序的。
- 非枢轴列可以表示为左边枢轴列的线性组合。例如,行阶梯形态
\[\left[\begin{array}{lll} 1 & 3 & 0 \\ 0 & 0 & 2 \end{array}\right] \]告诉我们第一列和第三列是枢轴列。第二列是非枢轴列,因为它是第一列的三倍。
所有列向量是线性无关的当且仅当所有列都是枢轴列。如果至少有一个非枢轴列,则这些列(因此,相应的向量)是线性相关的。
注释 考虑一个向量空间 \(V\),其中有 \(k\) 个线性无关的向量 \(\boldsymbol{b}_1, \ldots, \boldsymbol{b}_k\) 和 \(m\) 个线性组合
定义 \(\boldsymbol{B}=\left[\boldsymbol{b}_1, \ldots, \boldsymbol{b}_k\right]\) 为一个矩阵,其列是线性无关的向量 \(\boldsymbol{b}_1, \ldots, \boldsymbol{b}_k\),我们可以更紧凑地写成
我们想要检验 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m\) 是否线性无关。为此,我们遵循检验 \(\sum_{j=1}^m \psi_j \boldsymbol{x}_j=\mathbf{0}\) 的一般方法。通过 (2.71),我们得到
这意味着当且仅当列向量 \(\left\{\boldsymbol{\lambda}_1, \ldots, \boldsymbol{\lambda}_m\right\}\) 是线性无关的, \(\left\{\boldsymbol{x}_1, \ldots, \boldsymbol{x}_m\right\}\) 是线性无关的。
注释:在一个向量空间 \(V\) 中,\(m\) 个由 \(k\) 个向量 \(\boldsymbol{x}_1, \ldots, \boldsymbol{x}_k\) 线性组合而成的向量是线性相关的,如果 \(m>k\)。