Elasticsearch Java API的基本使用
说明
在明确了ES的基本概念和使用方法后,我们来学习如何使用ES的Java API.
本文假设你已经对ES的基本概念已经有了一个比较全面的认识。
客户端
你可以用Java客户端做很多事情:
- 执行标准的index,get,delete,update,search等操作。
- 在正在运行的集群上执行管理任务。
但是,通过官方文档可以得知,现在存在至少三种Java客户端。
- Transport Client
- Java High Level REST Client
- Java Low Level Rest Client
造成这种混乱的原因是:
-
长久以来,ES并没有官方的Java客户端,并且Java自身是可以简单支持ES的API的,于是就先做成了TransportClient。但是TransportClient的缺点是显而易见的,它没有使用RESTful风格的接口,而是二进制的方式传输数据。
-
之后ES官方推出了Java Low Level REST Client,它支持RESTful,用起来也不错。但是缺点也很明显,因为TransportClient的使用者把代码迁移到Low Level REST Client的工作量比较大。官方文档专门为迁移代码出了一堆文档来提供参考。
-
现在ES官方推出Java High Level REST Client,它是基于Java Low Level REST Client的封装,并且API接收参数和返回值和TransportClient是一样的,使得代码迁移变得容易并且支持了RESTful的风格,兼容了这两种客户端的优点。当然缺点是存在的,就是版本的问题。ES的小版本更新非常频繁,在最理想的情况下,客户端的版本要和ES的版本一致(至少主版本号一致),次版本号不一致的话,基本操作也许可以,但是新API就不支持了。
-
强烈建议ES5及其以后的版本使用Java High Level REST Client。笔者这里使用的是ES5.6.3,下面的文章将基于JDK1.8+Spring Boot+ES5.6.3 Java High Level REST Client+Maven进行示例。
stackoverflow上的问答:
https://stackoverflow.com/questions/47031840/elasticsearchhow-to-choose-java-client/47036028#47036028
详细说明:
https://www.elastic.co/blog/the-elasticsearch-java-high-level-rest-client-is-out
参考资料:
https://www.elastic.co/guide/en/elasticsearch/client/java-rest/5.6/java-rest-high.html
Java High Level REST Client 介绍
Java High Level REST Client 是基于Java Low Level REST Client的,每个方法都可以是同步或者异步的。同步方法返回响应对象,而异步方法名以“async”结尾,并需要传入一个监听参数,来确保提醒是否有错误发生。
Java High Level REST Client需要Java1.8版本和ES。并且ES的版本要和客户端版本一致。和TransportClient接收的参数和返回值是一样的。
以下实践均是基于5.6.3的ES集群和Java High Level REST Client的。
Maven 依赖
<dependency>
<groupId>org.elasticsearch.client</groupId>
<artifactId>elasticsearch-rest-high-level-client</artifactId>
<version>5.6.3</version>
</dependency>
初始化
//Low Level Client init
RestClient lowLevelRestClient = RestClient.builder(
new HttpHost("localhost", 9200, "http")).build();
//High Level Client init
RestHighLevelClient client =
new RestHighLevelClient(lowLevelRestClient);
High Level REST Client的初始化是依赖Low Level客户端的
Index API
类似HTTP请求,Index API包括index request和index response
Index request的构造
构造一条index request的例子:
IndexRequest request = new IndexRequest(
"posts", //index name
"doc", // type
"1"); // doc id
String jsonString = "{" +
"\"user\":\"kimchy\"," +
"\"postDate\":\"2013-01-30\"," +
"\"message\":\"trying out Elasticsearch\"" +
"}";
request.source(jsonString, XContentType.JSON);
注意到这里是使用的String 类型。
另一种构造的方法:
Map<String, Object> jsonMap = new HashMap<>();
jsonMap.put("user", "kimchy");
jsonMap.put("postDate", new Date());
jsonMap.put("message", "trying out Elasticsearch");
IndexRequest indexRequest = new IndexRequest("posts", "doc", "1")
.source(jsonMap);
//Map会自动转成JSON
除了String和Map ,XContentBuilder 类型也是可以的:
XContentBuilder builder = XContentFactory.jsonBuilder();
builder.startObject();
{
builder.field("user", "kimchy");
builder.field("postDate", new Date());
builder.field("message", "trying out Elasticsearch");
}
builder.endObject();
IndexRequest indexRequest = new IndexRequest("posts", "doc", "1")
.source(builder);
更直接一点的,在实例化index request对象时,可以直接给出键值对:
IndexRequest indexRequest = new IndexRequest("posts", "doc", "1")
.source("user", "kimchy",
"postDate", new Date(),
"message", "trying out Elasticsearch");
index response的获取
同步执行
IndexResponse indexResponse = client.index(request);
异步执行
client.indexAsync(request, new ActionListener<IndexResponse>() {
@Override
public void onResponse(IndexResponse indexResponse) {
}
@Override
public void onFailure(Exception e) {
}
});
需要注意的是,异步执行的方法名以Async结尾,并且多了一个Listener参数,并且需要重写回调方法。
在kibana控制台查询得到数据:
{
"_index": "posts",
"_type": "doc",
"_id": "1",
"_version": 1,
"found": true,
"_source": {
"user": "kimchy",
"postDate": "2017-11-01T05:48:26.648Z",
"message": "trying out Elasticsearch"
}
}
index request中的数据已经成功入库。
index response的返回值操作
client.index()方法返回值类型为IndexResponse,我们可以用它来进行如下操作:
String index = indexResponse.getIndex(); //index名称,类型等信息
String type = indexResponse.getType();
String id = indexResponse.getId();
long version = indexResponse.getVersion();
if (indexResponse.getResult() == DocWriteResponse.Result.CREATED) {
} else if (indexResponse.getResult() == DocWriteResponse.Result.UPDATED) {
}
ShardInfo shardInfo = indexResponse.getShardInfo();
//对分片使用的判断
if (shardInfo.getTotal() != shardInfo.getSuccessful()) {
}
if (shardInfo.getFailed() > 0) {
for (ReplicationResponse.ShardInfo.Failure failure : shardInfo.getFailures()) {
String reason = failure.reason();
}
}
对version冲突的判断:
IndexRequest request = new IndexRequest("posts", "doc", "1")
.source("field", "value")
.version(1);
try {
IndexResponse response = client.index(request);
} catch(ElasticsearchException e) {
if (e.status() == RestStatus.CONFLICT) {
}
}
对index动作的判断:
IndexRequest request = new IndexRequest("posts", "doc", "1")
.source("field", "value")
.opType(DocWriteRequest.OpType.CREATE);//create or update
try {
IndexResponse response = client.index(request);
} catch(ElasticsearchException e) {
if (e.status() == RestStatus.CONFLICT) {
}
}
GET API
GET request
GetRequest getRequest = new GetRequest(
"posts",//index name
"doc", //type
"1"); //id
GET response
同步方法:
GetResponse getResponse = client.get(getRequest);
异步方法:
client.getAsync(request, new ActionListener<GetResponse>() {
@Override
public void onResponse(GetResponse getResponse) {
}
@Override
public void onFailure(Exception e) {
}
});
对返回对象的操作:
String index = getResponse.getIndex();
String type = getResponse.getType();
String id = getResponse.getId();
if (getResponse.isExists()) {
long version = getResponse.getVersion();
String sourceAsString = getResponse.getSourceAsString();
Map<String, Object> sourceAsMap = getResponse.getSourceAsMap();
byte[] sourceAsBytes = getResponse.getSourceAsBytes();
} else {
//TODO
}
异常处理:
GetRequest request = new GetRequest("does_not_exist", "doc", "1");
try {
GetResponse getResponse = client.get(request);
} catch (ElasticsearchException e) {
if (e.status() == RestStatus.NOT_FOUND) {
}
if (e.status() == RestStatus.CONFLICT) {
}
}
DELETE API
与Index API和 GET API及其相似
DELETE request
DeleteRequest request = new DeleteRequest(
"posts",
"doc",
"1");
DELETE response
同步:
DeleteResponse deleteResponse = client.delete(request);
异步:
client.deleteAsync(request, new ActionListener<DeleteResponse>() {
@Override
public void onResponse(DeleteResponse deleteResponse) {
}
@Override
public void onFailure(Exception e) {
}
});
Update API
update request
UpdateRequest updateRequest = new UpdateRequest(
"posts",
"doc",
"1");
update脚本:
在之前我们介绍了如何使用简单的脚本来更新数据
POST /posts/doc/1/_update?pretty
{
"script" : "ctx._source.age += 5"
}
也可以写成:
POST /posts/doc/1/_update?pretty
{
"script" : {
"lang":"painless",
"source":"ctx._source.age += 5"
}
}
对应代码:
UpdateRequest updateRequest = new UpdateRequest("posts", "doc", "1");
Map<String, Object> parameters = new HashMap<>();
parameters.put("age", 4);
Script inline = new Script(ScriptType.INLINE, "painless", "ctx._source.age += params.age", parameters);
updateRequest.script(inline);
try {
UpdateResponse updateResponse = client.update(updateRequest);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
使用部分文档更新
- String
String jsonString = "{" +
"\"updated\":\"2017-01-02\"," +
"\"reason\":\"easy update\"" +
"}";
updateRequest.doc(jsonString, XContentType.JSON);
try {
client.update(updateRequest);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
2.Map
Map<String, Object> jsonMap = new HashMap<>();
jsonMap.put("updated", new Date());
jsonMap.put("reason", "dailys update");
UpdateRequest updateRequest = new UpdateRequest("posts", "doc", "1").doc(jsonMap);
try {
client.update(updateRequest);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
3.XContentBuilder
try {
XContentBuilder builder = XContentFactory.jsonBuilder();
builder.startObject();
{
builder.field("updated", new Date());
System.out.println(new Date());
builder.field("reason", "daily update");
}
builder.endObject();
UpdateRequest request = new UpdateRequest("posts", "doc", "1")
.doc(builder);
client.update(request);
} catch (IOException e) {
// TODO: handle exception
}
4.键值对
try {
UpdateRequest request = new UpdateRequest("posts", "doc", "1")
.doc("updated", new Date(),
"reason", "daily updatesss");
client.update(request);
} catch (IOException e) {
// TODO: handle exception
}
upsert
如果文档不存在,可以使用upsert来生成这个文档。
String jsonString = "{\"created\":\"2017-01-01\"}";
request.upsert(jsonString, XContentType.JSON);
同样地,upsert可以接Map,Xcontent,键值对参数。
update response
同样地,update response可以是同步的,也可以是异步的
同步执行:
UpdateResponse updateResponse = client.update(request);
异步执行:
client.updateAsync(request, new ActionListener<UpdateResponse>() {
@Override
public void onResponse(UpdateResponse updateResponse) {
}
@Override
public void onFailure(Exception e) {
}
});
与其他response类似,update response返回对象可以进行各种判断操作,这里不再赘述。
Bulk API
Bulk request
之前的文档说明过,bulk接口是批量index/update/delete操作
在API中,只需要一个bulk request就可以完成一批请求。
BulkRequest request = new BulkRequest();
request.add(new IndexRequest("posts", "doc", "1")
.source(XContentType.JSON,"field", "foo"));
request.add(new IndexRequest("posts", "doc", "2")
.source(XContentType.JSON,"field", "bar"));
request.add(new IndexRequest("posts", "doc", "3")
.source(XContentType.JSON,"field", "baz"));
- 注意,Bulk API只接受JSON和SMILE格式.其他格式的数据将会报错。
- 不同类型的request可以写在同一个bulk request里。
BulkRequest request = new BulkRequest();
request.add(new DeleteRequest("posts", "doc", "3"));
request.add(new UpdateRequest("posts", "doc", "2")
.doc(XContentType.JSON,"other", "test"));
request.add(new IndexRequest("posts", "doc", "4")
.source(XContentType.JSON,"field", "baz"));
bulk response
同步执行:
BulkResponse bulkResponse = client.bulk(request);
异步执行:
client.bulkAsync(request, new ActionListener<BulkResponse>() {
@Override
public void onResponse(BulkResponse bulkResponse) {
}
@Override
public void onFailure(Exception e) {
}
});
对response的处理与其他类型的response十分类似,在这不再赘述。
bulk processor
BulkProcessor 简化bulk API的使用,并且使整个批量操作透明化。
BulkProcessor 的执行需要三部分组成:
- RestHighLevelClient :执行bulk请求并拿到响应对象。
- BulkProcessor.Listener:在执行bulk request之前、之后和当bulk response发生错误时调用。
- ThreadPool:bulk request在这个线程池中执行操作,这使得每个请求不会被挡住,在其他请求正在执行时,也可以接收新的请求。
示例代码:
Settings settings = Settings.EMPTY;
ThreadPool threadPool = new ThreadPool(settings); //构建新的线程池
BulkProcessor.Listener listener = new BulkProcessor.Listener() {
//构建bulk listener
@Override
public void beforeBulk(long executionId, BulkRequest request) {
//重写beforeBulk,在每次bulk request发出前执行,在这个方法里面可以知道在本次批量操作中有多少操作数
int numberOfActions = request.numberOfActions();
logger.debug("Executing bulk [{}] with {} requests", executionId, numberOfActions);
}
@Override
public void afterBulk(long executionId, BulkRequest request, BulkResponse response) {
//重写afterBulk方法,每次批量请求结束后执行,可以在这里知道是否有错误发生。
if (response.hasFailures()) {
logger.warn("Bulk [{}] executed with failures", executionId);
} else {
logger.debug("Bulk [{}] completed in {} milliseconds", executionId, response.getTook().getMillis());
}
}
@Override
public void afterBulk(long executionId, BulkRequest request, Throwable failure) {
//重写方法,如果发生错误就会调用。
logger.error("Failed to execute bulk", failure);
}
};
BulkProcessor.Builder builder = new BulkProcessor.Builder(client::bulkAsync, listener, threadPool);//使用builder做批量操作的控制
BulkProcessor bulkProcessor = builder.build();
//在这里调用build()方法构造bulkProcessor,在底层实际上是用了bulk的异步操作
builder.setBulkActions(500); //执行多少次动作后刷新bulk.默认1000,-1禁用
builder.setBulkSize(new ByteSizeValue(1L, ByteSizeUnit.MB));//执行的动作大小超过多少时,刷新bulk。默认5M,-1禁用
builder.setConcurrentRequests(0);//最多允许多少请求同时执行。默认是1,0是只允许一个。
builder.setFlushInterval(TimeValue.timeValueSeconds(10L));//设置刷新bulk的时间间隔。默认是不刷新的。
builder.setBackoffPolicy(BackoffPolicy.constantBackoff(TimeValue.timeValueSeconds(1L), 3)); //设置补偿机制参数。由于资源限制(比如线程池满),批量操作可能会失败,在这定义批量操作的重试次数。
//新建三个 index 请求
IndexRequest one = new IndexRequest("posts", "doc", "1").
source(XContentType.JSON, "title", "In which order are my Elasticsearch queries executed?");
IndexRequest two = new IndexRequest("posts", "doc", "2")
.source(XContentType.JSON, "title", "Current status and upcoming changes in Elasticsearch");
IndexRequest three = new IndexRequest("posts", "doc", "3")
.source(XContentType.JSON, "title", "The Future of Federated Search in Elasticsearch");
//新的三条index请求加入到上面配置好的bulkProcessor里面。
bulkProcessor.add(one);
bulkProcessor.add(two);
bulkProcessor.add(three);
// add many request here.
//bulkProcess必须被关闭才能使上面添加的操作生效
bulkProcessor.close(); //立即关闭
//关闭bulkProcess的两种方法:
try {
//2.调用awaitClose.
//简单来说,就是在规定的时间内,是否所有批量操作完成。全部完成,返回true,未完成返//回false
boolean terminated = bulkProcessor.awaitClose(30L, TimeUnit.SECONDS);
} catch (InterruptedException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
Search API
Search request
Search API提供了对文档的查询和聚合的查询。
它的基本形式:
SearchRequest searchRequest = new SearchRequest(); //构造search request .在这里无参,查询全部索引
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();//大多数查询参数要写在searchSourceBuilder里
searchSourceBuilder.query(QueryBuilders.matchAllQuery());//增加match_all的条件。
SearchRequest searchRequest = new SearchRequest("posts"); //指定posts索引
searchRequest.types("doc"); //指定doc类型
使用SearchSourceBuilder
大多数的查询控制都可以使用SearchSourceBuilder实现。
举一个简单例子:
SearchSourceBuilder sourceBuilder = new SearchSourceBuilder(); //构造一个默认配置的对象
sourceBuilder.query(QueryBuilders.termQuery("user", "kimchy")); //设置查询
sourceBuilder.from(0); //设置从哪里开始
sourceBuilder.size(5); //每页5条
sourceBuilder.timeout(new TimeValue(60, TimeUnit.SECONDS)); //设置超时时间
配置好searchSourceBuilder后,将它传入searchRequest里:
SearchRequest searchRequest = new SearchRequest();
searchRequest.source(sourceBuilder);
建立查询
在上面的例子,我们注意到,sourceBuilder构造查询条件时,使用QueryBuilders对象.
在所有ES查询中,它存在于所有ES支持的查询类型中。
使用它的构造体来创建:
MatchQueryBuilder matchQueryBuilder = new MatchQueryBuilder("user", "kimchy");
这里的代码相当于:
"query": { "match": { "user": "kimchy" } }
相关设置:
matchQueryBuilder.fuzziness(Fuzziness.AUTO); //是否模糊查询
matchQueryBuilder.prefixLength(3); //设置前缀长度
matchQueryBuilder.maxExpansions(10);//设置最大膨胀系数 ???
QueryBuilder还可以使用 QueryBuilders工具类来创造,编程体验比较顺畅:
QueryBuilder matchQueryBuilder = QueryBuilders.matchQuery("user", "kimchy")
.fuzziness(Fuzziness.AUTO)
.prefixLength(3)
.maxExpansions(10);
无论QueryBuilder对象是如何创建的,都要将它传入SearchSourceBuilder里面:
searchSourceBuilder.query(matchQueryBuilder);
在之前导入的account数据中,使用match的示例代码:
GET /bank/_search?pretty
{
"query": {
"match": {
"firstname": "Virginia"
}
}
}
JAVA:
@Test
public void test2(){
RestClient lowLevelRestClient = RestClient.builder(
new HttpHost("172.16.73.50", 9200, "http")).build();
RestHighLevelClient client =
new RestHighLevelClient(lowLevelRestClient);
SearchRequest searchRequest = new SearchRequest("bank");
searchRequest.types("account");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
MatchQueryBuilder mqb = QueryBuilders.matchQuery("firstname", "Virginia");
searchSourceBuilder.query(mqb);
searchRequest.source(searchSourceBuilder);
try {
SearchResponse searchResponse = client.search(searchRequest);
System.out.println(searchResponse.toString());
} catch (IOException e) {
e.printStackTrace();
}
}
排序
SearchSourceBuilder可以添加一种或多种SortBuilder。
有四种特殊的排序实现:
- field
- score
- GeoDistance
- scriptSortBuilder
sourceBuilder.sort(new ScoreSortBuilder().order(SortOrder.DESC)); //按照score倒序排列
sourceBuilder.sort(new FieldSortBuilder("_uid").order(SortOrder.ASC)); //并且按照id正序排列
过滤
默认情况下,searchRequest返回文档内容,与REST API一样,这里你可以重写search行为。例如,你可以完全关闭"_source"检索。
sourceBuilder.fetchSource(false);
该方法还接受一个或多个通配符模式的数组,以更细粒度地控制包含或排除哪些字段。
String[] includeFields = new String[] {"title", "user", "innerObject.*"};
String[] excludeFields = new String[] {"_type"};
sourceBuilder.fetchSource(includeFields, excludeFields);
聚合请求
通过配置适当的 AggregationBuilder ,再将它传入SearchSourceBuilder里,就可以完成聚合请求了。
之前的文档里面,我们通过下面这条命令,导入了一千条account信息:
curl -H "Content-Type: application/json" -XPOST 'localhost:9200/bank/account/_bulk?pretty&refresh' --data-binary "@accounts.json"
随后,我们介绍了如何通过聚合请求进行分组:
GET /bank/_search?pretty
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "state.keyword"
}
}
}
}
我们将这一千条数据根据state字段分组,得到响应:
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 999,
"max_score": 0,
"hits": []
},
"aggregations": {
"group_by_state": {
"doc_count_error_upper_bound": 20,
"sum_other_doc_count": 770,
"buckets": [
{
"key": "ID",
"doc_count": 27
},
{
"key": "TX",
"doc_count": 27
},
{
"key": "AL",
"doc_count": 25
},
{
"key": "MD",
"doc_count": 25
},
{
"key": "TN",
"doc_count": 23
},
{
"key": "MA",
"doc_count": 21
},
{
"key": "NC",
"doc_count": 21
},
{
"key": "ND",
"doc_count": 21
},
{
"key": "MO",
"doc_count": 20
},
{
"key": "AK",
"doc_count": 19
}
]
}
}
}
Java实现:
@Test
public void test2(){
RestClient lowLevelRestClient = RestClient.builder(
new HttpHost("172.16.73.50", 9200, "http")).build();
RestHighLevelClient client =
new RestHighLevelClient(lowLevelRestClient);
SearchRequest searchRequest = new SearchRequest("bank");
searchRequest.types("account");
TermsAggregationBuilder aggregation = AggregationBuilders.terms("group_by_state")
.field("state.keyword");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.aggregation(aggregation);
searchSourceBuilder.size(0);
searchRequest.source(searchSourceBuilder);
try {
SearchResponse searchResponse = client.search(searchRequest);
System.out.println(searchResponse.toString());
} catch (IOException e) {
e.printStackTrace();
}
}
输出:
{"took":4,"timed_out":false,"_shards":{"total":5,"successful":5,"skipped":0,"failed":0},"hits":{"total":999,"max_score":0.0,"hits":[]},"aggregations":{"sterms#group_by_state":{"doc_count_error_upper_bound":20,"sum_other_doc_count":770,"buckets":[{"key":"ID","doc_count":27},{"key":"TX","doc_count":27},{"key":"AL","doc_count":25},{"key":"MD","doc_count":25},{"key":"TN","doc_count":23},{"key":"MA","doc_count":21},{"key":"NC","doc_count":21},{"key":"ND","doc_count":21},{"key":"MO","doc_count":20},{"key":"AK","doc_count":19}]}}}
同步执行
SearchResponse searchResponse = client.search(searchRequest);
异步执行
client.searchAsync(searchRequest, new ActionListener<SearchResponse>() {
@Override
public void onResponse(SearchResponse searchResponse) {
}
@Override
public void onFailure(Exception e) {
}
});
Search response
Search response返回对象与其在API里的一样,返回一些元数据和文档数据。
首先,返回对象里的数据十分重要,因为这是查询的返回结果、使用分片情况、文档数据,HTTP状态码等
RestStatus status = searchResponse.status();
TimeValue took = searchResponse.getTook();
Boolean terminatedEarly = searchResponse.isTerminatedEarly();
boolean timedOut = searchResponse.isTimedOut();
其次,返回对象里面包含关于分片的信息和分片失败的处理:
int totalShards = searchResponse.getTotalShards();
int successfulShards = searchResponse.getSuccessfulShards();
int failedShards = searchResponse.getFailedShards();
for (ShardSearchFailure failure : searchResponse.getShardFailures()) {
// failures should be handled here
}
取回searchHit
为了取回文档数据,我们要从search response的返回对象里先得到searchHit对象。
SearchHits hits = searchResponse.getHits();
取回文档数据:
@Test
public void test2(){
RestClient lowLevelRestClient = RestClient.builder(
new HttpHost("172.16.73.50", 9200, "http")).build();
RestHighLevelClient client =
new RestHighLevelClient(lowLevelRestClient);
SearchRequest searchRequest = new SearchRequest("bank");
searchRequest.types("account");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchRequest.source(searchSourceBuilder);
try {
SearchResponse searchResponse = client.search(searchRequest);
SearchHits searchHits = searchResponse.getHits();
SearchHit[] searchHit = searchHits.getHits();
for (SearchHit hit : searchHit) {
System.out.println(hit.getSourceAsString());
}
} catch (IOException e) {
e.printStackTrace();
}
}
根据需要,还可以转换成其他数据类型:
String sourceAsString = hit.getSourceAsString();
Map<String, Object> sourceAsMap = hit.getSourceAsMap();
String documentTitle = (String) sourceAsMap.get("title");
List<Object> users = (List<Object>) sourceAsMap.get("user");
Map<String, Object> innerObject = (Map<String, Object>) sourceAsMap.get("innerObject");
取回聚合数据
聚合数据可以通过SearchResponse返回对象,取到它的根节点,然后再根据名称取到聚合数据。
GET /bank/_search?pretty
{
"size": 0,
"aggs": {
"group_by_state": {
"terms": {
"field": "state.keyword"
}
}
}
}
响应:
{
"took": 2,
"timed_out": false,
"_shards": {
"total": 5,
"successful": 5,
"skipped": 0,
"failed": 0
},
"hits": {
"total": 999,
"max_score": 0,
"hits": []
},
"aggregations": {
"group_by_state": {
"doc_count_error_upper_bound": 20,
"sum_other_doc_count": 770,
"buckets": [
{
"key": "ID",
"doc_count": 27
},
{
"key": "TX",
"doc_count": 27
},
{
"key": "AL",
"doc_count": 25
},
{
"key": "MD",
"doc_count": 25
},
{
"key": "TN",
"doc_count": 23
},
{
"key": "MA",
"doc_count": 21
},
{
"key": "NC",
"doc_count": 21
},
{
"key": "ND",
"doc_count": 21
},
{
"key": "MO",
"doc_count": 20
},
{
"key": "AK",
"doc_count": 19
}
]
}
}
}
Java实现:
@Test
public void test2(){
RestClient lowLevelRestClient = RestClient.builder(
new HttpHost("172.16.73.50", 9200, "http")).build();
RestHighLevelClient client =
new RestHighLevelClient(lowLevelRestClient);
SearchRequest searchRequest = new SearchRequest("bank");
searchRequest.types("account");
TermsAggregationBuilder aggregation = AggregationBuilders.terms("group_by_state")
.field("state.keyword");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.aggregation(aggregation);
searchSourceBuilder.size(0);
searchRequest.source(searchSourceBuilder);
try {
SearchResponse searchResponse = client.search(searchRequest);
Aggregations aggs = searchResponse.getAggregations();
Terms byStateAggs = aggs.get("group_by_state");
Terms.Bucket b = byStateAggs.getBucketByKey("ID"); //只取key是ID的bucket
System.out.println(b.getKeyAsString()+","+b.getDocCount());
System.out.println("!!!");
List<? extends Bucket> aggList = byStateAggs.getBuckets();//获取bucket数组里所有数据
for (Bucket bucket : aggList) {
System.out.println("key:"+bucket.getKeyAsString()+",docCount:"+bucket.getDocCount());;
}
} catch (IOException e) {
e.printStackTrace();
}
}
Search Scroll API
search scroll API是用于处理search request里面的大量数据的。
- 使用ES做分页查询有两种方法。一是配置search request的from,size参数。二是使用scroll API。搜索结果建议使用scroll API,查询效率高。
为了使用scroll,按照下面给出的步骤执行:
初始化search scroll上下文
带有scroll参数的search请求必须被执行,来初始化scroll session。ES能检测到scroll参数的存在,保证搜索上下文在相应的时间间隔里存活
SearchRequest searchRequest = new SearchRequest("account"); //从 account 索引中查询
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
searchSourceBuilder.query(matchQuery("first", "Virginia")); //match条件
searchSourceBuilder.size(size); //一次取回多少数据
searchRequest.source(searchSourceBuilder);
searchRequest.scroll(TimeValue.timeValueMinutes(1L));//设置scroll间隔
SearchResponse searchResponse = client.search(searchRequest);
String scrollId = searchResponse.getScrollId(); //取回这条响应的scroll id,在后续的scroll调用中会用到
SearchHit[] hits = searchResponse.getHits().getHits();//得到文档数组
取回所有相关文档
第二步,得到的scroll id 和新的scroll间隔要设置到 SearchScrollRequest里,再调用searchScroll方法。
ES会返回一批带有新scroll id的查询结果。以此类推,新的scroll id可以用于子查询,来得到另一批新数据。这个过程应该在一个循环内,直到没有数据返回为止,这意味着scroll消耗殆尽,所有匹配上的数据都已经取回。
SearchScrollRequest scrollRequest = new SearchScrollRequest(scrollId); //传入scroll id并设置间隔。
scrollRequest.scroll(TimeValue.timeValueSeconds(30));
SearchResponse searchScrollResponse = client.searchScroll(scrollRequest);//执行scroll搜索
scrollId = searchScrollResponse.getScrollId(); //得到本次scroll id
hits = searchScrollResponse.getHits();
清理 scroll 上下文
使用Clear scroll API来检测到最后一个scroll id 来释放scroll上下文.虽然在scroll过期时,这个清理行为会最终自动触发,但是最好的实践是当scroll session结束时,马上释放它。
可选参数
scrollRequest.scroll(TimeValue.timeValueSeconds(60L)); //设置60S的scroll存活时间
scrollRequest.scroll("60s"); //字符串参数
如果在scrollRequest不设置的话,会以searchRequest.scroll()设置的为准。
同步执行
SearchResponse searchResponse = client.searchScroll(scrollRequest);
异步执行
client.searchScrollAsync(scrollRequest, new ActionListener<SearchResponse>() {
@Override
public void onResponse(SearchResponse searchResponse) {
}
@Override
public void onFailure(Exception e) {
}
});
- 需要注意的是,search scroll API的请求响应返回值也是一个searchResponse对象。
完整示例
@Test
public void test3(){
RestClient lowLevelRestClient = RestClient.builder(
new HttpHost("172.16.73.50", 9200, "http")).build();
RestHighLevelClient client =
new RestHighLevelClient(lowLevelRestClient);
SearchRequest searchRequest = new SearchRequest("bank");
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
MatchAllQueryBuilder mqb = QueryBuilders.matchAllQuery();
searchSourceBuilder.query(mqb);
searchSourceBuilder.size(10);
searchRequest.source(searchSourceBuilder);
searchRequest.scroll(TimeValue.timeValueMinutes(1L));
try {
SearchResponse searchResponse = client.search(searchRequest);
String scrollId = searchResponse.getScrollId();
SearchHit[] hits = searchResponse.getHits().getHits();
System.out.println("first scroll:");
for (SearchHit searchHit : hits) {
System.out.println(searchHit.getSourceAsString());
}
Scroll scroll = new Scroll(TimeValue.timeValueMinutes(1L));
System.out.println("loop scroll:");
while(hits != null && hits.length>0){
SearchScrollRequest scrollRequest = new SearchScrollRequest(scrollId);
scrollRequest.scroll(scroll);
searchResponse = client.searchScroll(scrollRequest);
scrollId = searchResponse.getScrollId();
hits = searchResponse.getHits().getHits();
for (SearchHit searchHit : hits) {
System.out.println(searchHit.getSourceAsString());
}
}
ClearScrollRequest clearScrollRequest = new ClearScrollRequest();
clearScrollRequest.addScrollId(scrollId);
ClearScrollResponse clearScrollResponse = client.clearScroll(clearScrollRequest);
boolean succeeded = clearScrollResponse.isSucceeded();
System.out.println("cleared:"+succeeded);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
Info API
Info API 提供一些关于集群、节点相关的信息查询。
request
MainResponse response = client.info();
response
ClusterName clusterName = response.getClusterName();
String clusterUuid = response.getClusterUuid();
String nodeName = response.getNodeName();
Version version = response.getVersion();
Build build = response.getBuild();
@Test
public void test4(){
RestClient lowLevelRestClient = RestClient.builder(
new HttpHost("172.16.73.50", 9200, "http")).build();
RestHighLevelClient client =
new RestHighLevelClient(lowLevelRestClient);
try {
MainResponse response = client.info();
ClusterName clusterName = response.getClusterName();
String clusterUuid = response.getClusterUuid();
String nodeName = response.getNodeName();
Version version = response.getVersion();
Build build = response.getBuild();
System.out.println("cluster name:"+clusterName);
System.out.println("cluster uuid:"+clusterUuid);
System.out.println("node name:"+nodeName);
System.out.println("node version:"+version);
System.out.println("node name:"+nodeName);
System.out.println("build info:"+build);
} catch (IOException e) {
// TODO Auto-generated catch block
e.printStackTrace();
}
}
总结
关于Elasticsearch 的 Java High Level REST Client API的基本用法大概就是这些,一些进阶技巧、概念要随时查阅官方文档。
作者:epicGeek
链接:https://www.jianshu.com/p/5cb91ed22956
來源:简书
简书著作权归作者所有,任何形式的转载都请联系作者获得授权并注明出处。